Self-supervised deep subspace clustering with entropy-norm

被引:0
|
作者
Guangyi Zhao
Simin Kou
Xuesong Yin
Guodao Zhang
Yigang Wang
机构
[1] Hangzhou Dianzi University,Department of Digital Media Technology
来源
Cluster Computing | 2024年 / 27卷
关键词
Deep subspace clustering; Self-supervise; Contrastive learning; Entropy-norm;
D O I
暂无
中图分类号
学科分类号
摘要
Auto-Encoder based Deep Subspace Clustering (DSC) has been widely applied in computer vision, motion segmentation and image processing. However, existing DSC methods suffer from two limitations: (1) they ignore the rich useful relational information and the connectivity within each subspace due to the reconstruction loss; (2) they design convolutional networks individually according to specific datasets. To address the above problems and improve the performance of DSC, we propose a novel algorithm called Self-Supervised deep Subspace Clustering with Entropy-norm(S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE) in this paper. Firstly, S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE introduces self-supervised contrastive learning to pre-train the encoder instead of requiring a decoder. Besides, the trained encoder is used as a feature extractor to segment subspace by combining self-expression layer and entropy-norm constraint. This not only preserves the local structure of data, but also improves the connectivity between data points. Extensive experimental results demonstrate the superior performance of S3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$^{3}$$\end{document}CE in comparison to the state-of-the-art approaches.
引用
收藏
页码:1611 / 1623
页数:12
相关论文
共 50 条
  • [41] Self-supervised spectral clustering with exemplar constraints
    Bai, Liang
    Zhao, Yunxiao
    Liang, Jiye
    PATTERN RECOGNITION, 2022, 132
  • [42] Fast Self-Supervised Clustering With Anchor Graph
    Wang, Jingyu
    Ma, Zhenyu
    Nie, Feiping
    Li, Xuelong
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2022, 33 (09) : 4199 - 4212
  • [43] SCGC : Self-supervised contrastive graph clustering
    Kulatilleke, Gayan K.
    Portmann, Marius
    Chandra, Shekhar S.
    NEUROCOMPUTING, 2025, 611
  • [44] Deep fiber clustering: Anatomically informed fiber clustering with self-supervised deep learning for fast and effective tractography parcellation
    Chen, Yuqian
    Zhang, Chaoyi
    Xue, Tengfei
    Song, Yang
    Makris, Nikos
    Rathi, Yogesh
    Cai, Weidong
    Zhang, Fan
    O'Donnell, Lauren J.
    NEUROIMAGE, 2023, 273
  • [45] Deep Multiview Clustering via Iteratively Self-Supervised Universal and Specific Space Learning
    Zhang, Yue
    Huang, Qinjian
    Zhang, Bin
    He, Shengfeng
    Dan, Tingting
    Peng, Hong
    Cai, Hongmin
    IEEE TRANSACTIONS ON CYBERNETICS, 2022, 52 (11) : 11734 - 11746
  • [46] A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering
    Zhang, Hongjing
    Zhan, Tianyang
    Davidson, Ian
    PATTERN RECOGNITION LETTERS, 2021, 148 : 75 - 81
  • [47] Self-Supervised Graph Attention Networks for Deep Weighted Multi-View Clustering
    Huang, Zongmo
    Ren, Yazhou
    Pu, Xiaorong
    Huang, Shudong
    Xu, Zenglin
    He, Lifang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 7, 2023, : 7936 - 7943
  • [48] A Self-Supervised Deep Learning Framework for Unsupervised Few-Shot Learning and Clustering
    Zhang, Hongjing
    Zhan, Tianyang
    Davidson, Ian
    Pattern Recognition Letters, 2021, 148 : 75 - 81
  • [49] Self-Supervised Deep Clustering Method for Detecting Abnormal Data of Wastewater Treatment Process
    Han, Honggui
    Sun, Meiting
    Li, Fangyu
    Wang, Chen
    Liu, Zezhong
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (02) : 1155 - 1166
  • [50] Semi-supervised learning made simple with self-supervised clustering
    Fini, Enrico
    Astolfi, Pietro
    Alahari, Karteek
    Alameda-Meda, Xavier
    Mairal, Julien
    Nabi, Moin
    Ricci, Elisa
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3187 - 3197