Optimal two-qubit circuits for universal fault-tolerant quantum computation

被引:0
|
作者
Andrew N. Glaudell
Neil J. Ross
Jacob M. Taylor
机构
[1] University of Maryland,Institute for Advanced Computer Studies and Joint Center for Quantum Information and Computer Science
[2] University of Maryland,Joint Quantum Institute
[3] Booz Allen Hamilton,Department of Mathematical Sciences
[4] George Mason University,Department of Mathematics and Statistics
[5] Dalhousie University,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We study two-qubit circuits over the Clifford+CS gate set, which consists of the Clifford gates together with the controlled-phase gate CS = diag(1, 1, 1, i). The Clifford+CS gate set is universal for quantum computation and its elements can be implemented fault-tolerantly in most error-correcting schemes through magic state distillation. Since non-Clifford gates are typically more expensive to perform in a fault-tolerant manner, it is often desirable to construct circuits that use few CS gates. In the present paper, we introduce an efficient and optimal synthesis algorithm for two-qubit Clifford+CS operators. Our algorithm inputs a Clifford+CS operator U and outputs a Clifford+CS circuit for U, which uses the least possible number of CS gates. Because the algorithm is deterministic, the circuit it associates to a Clifford+CS operator can be viewed as a normal form for that operator. We give an explicit description of these normal forms and use this description to derive a worst-case lower bound of 5log2(1ϵ)+O(1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$5{{\rm{log}}}_{2}(\frac{1}{\epsilon })+O(1)$$\end{document} on the number of CS gates required to ϵ-approximate elements of SU(4). Our work leverages a wide variety of mathematical tools that may find further applications in the study of fault-tolerant quantum circuits.
引用
收藏
相关论文
共 50 条
  • [41] Quantum circuits for incompletely specified two-qubit operators
    Shende, VV
    Markov, IL
    QUANTUM INFORMATION & COMPUTATION, 2005, 5 (01) : 49 - 57
  • [42] New limits on fault-tolerant quantum computation
    Buhrman, Harry
    Cleve, Richard
    Laurent, Monique
    Linden, Noah
    Schrijver, Alexander
    Unger, Falk
    47TH ANNUAL IEEE SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 2006, : 411 - 419
  • [43] Fibonacci scheme for fault-tolerant quantum computation
    Aliferis, Panos
    Preskill, John
    PHYSICAL REVIEW A, 2009, 79 (01):
  • [44] Fault-tolerant quantum computation with local gates
    Gottesman, D
    JOURNAL OF MODERN OPTICS, 2000, 47 (2-3) : 333 - 345
  • [45] A Fully Fault-Tolerant Representation of Quantum Circuits
    Paler, Alexandru
    Polian, Ilia
    Nemoto, Kae
    Devitt, Simon J.
    REVERSIBLE COMPUTATION, RC 2015, 2015, 9138 : 139 - 154
  • [46] Fault-tolerant quantum computation of molecular observables
    Steudtner, Mark
    Morley-Short, Sam
    Pol, William
    Sim, Sukin
    Cortes, Cristian L.
    Loipersberger, Matthias
    Parrish, Robert M.
    Degroote, Matthias
    Moll, Nikolaj
    Santagati, Raffaele
    Streif, Michael
    QUANTUM, 2023, 7
  • [47] Fault-tolerant quantum computation with few qubits
    Chao, Rui
    Reichardt, Ben W.
    NPJ QUANTUM INFORMATION, 2018, 4
  • [48] A new universal and fault-tolerant quantum basis
    Boykin, PO
    Mor, T
    Pulver, M
    Roychowdhury, V
    Vatan, F
    INFORMATION PROCESSING LETTERS, 2000, 75 (03) : 101 - 107
  • [49] Fault-tolerant quantum computation with few qubits
    Rui Chao
    Ben W. Reichardt
    npj Quantum Information, 4
  • [50] FAULT-TOLERANT QUANTUM COMPUTATION WITH CONSTANT OVERHEAD
    Gottesman, Daniel
    QUANTUM INFORMATION & COMPUTATION, 2014, 14 (15-16) : 1338 - 1371