Box-Ball Systems and Robinson-Schensted-Knuth Correspondence

被引:0
|
作者
Kaori Fukuda
机构
[1] Kobe University,Department of Mathematics
来源
关键词
box-ball system; Robinson-Schensted-Knuth correspondence; soliton cellular automaton; young tableau; Knuth equivalence;
D O I
暂无
中图分类号
学科分类号
摘要
We study a box-ball system from the viewpoint of combinatorics of words and tableaux. Each state of the box-ball system can be transformed into a pair of tableaux (P, Q) by the Robinson-Schensted-Knuth correspondence. In the language of tableaux, the P-symbol gives rise to a conserved quantity of the box-ball system, and the Q-symbol evolves independently of the P-symbol. The time evolution of the Q-symbol is described explicitly in terms of the box-labels.
引用
收藏
页码:67 / 89
页数:22
相关论文
共 50 条
  • [21] ROBINSON-SCHENSTED-KNUTH ALGORITHM, JEU DE TAQUIN, AND KEROV-VERSHIK MEASURES ON INFINITE TABLEAUX
    Sniady, Piotr
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2014, 28 (02) : 598 - 630
  • [22] A quantization of box-ball systems
    Inoue, R
    Kuniba, A
    Okado, M
    REVIEWS IN MATHEMATICAL PHYSICS, 2004, 16 (10) : 1227 - 1258
  • [23] Matrix-Ball Construction of affine Robinson–Schensted correspondence
    Michael Chmutov
    Pavlo Pylyavskyy
    Elena Yudovina
    Selecta Mathematica, 2018, 24 : 667 - 750
  • [24] Properties of the nonsymmetric Robinson–Schensted–Knuth algorithm
    James Haglund
    Sarah Mason
    Jeffrey Remmel
    Journal of Algebraic Combinatorics, 2013, 38 : 285 - 327
  • [25] Matrix-Ball Construction of affine Robinson-Schensted correspondence
    Chmutov, Michael
    Pylyavskyy, Pavlo
    Yudovina, Elena
    SELECTA MATHEMATICA-NEW SERIES, 2018, 24 (02): : 667 - 750
  • [26] The number of orbits of periodic box-ball systems
    Mikoda, Akihiro
    Inokuchi, Shuichi
    Mizoguchi, Yoshihiro
    Fujio, Mitsuhiko
    UNCONVENTIONAL COMPUTATION, PROCEEDINGS, 2006, 4135 : 181 - 194
  • [27] On fundamental cycle of periodic Box-Ball systems
    Tokihiro, Tetsuji
    Bilinear Integrable Systems: From Classical to Quatum, Continuous to Discrete, 2006, 201 : 325 - 334
  • [28] AN OCCURRENCE OF THE ROBINSON-SCHENSTED CORRESPONDENCE
    STEINBERG, R
    JOURNAL OF ALGEBRA, 1988, 113 (02) : 523 - 528
  • [29] Gelfand models and Robinson–Schensted correspondence
    Fabrizio Caselli
    Roberta Fulci
    Journal of Algebraic Combinatorics, 2012, 36 : 175 - 207
  • [30] The exotic Robinson-Schensted correspondence
    Henderson, Anthony
    Trapa, Peter E.
    JOURNAL OF ALGEBRA, 2012, 370 : 32 - 45