Rings in which every nonzero weakly prime ideal is prime

被引:0
|
作者
Abdelhaq El Khalfi
Najib Mahdou
Youssef Zahir
机构
[1] University S.M. Ben Abdellah Fez,Modelling and Mathematical Structures Laboratory, Department of Mathematics, Faculty of Science and Technology of Fez
关键词
WP-ring; Trivial ring extension; Amalgamation of rings along an ideal; Primary 13B99; Secondary 13A15; 13G05; 13B21;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we study WP-ring, that is a ring in which every nonzero weakly prime ideal is prime. Some results including the characterizations and the transfer of WP-ring property to homomorphic image and localization are given. Also, we study the possible transfer of the WP-ring property between A and A∝E\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\propto E$$\end{document} and between A and A⋈fJ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A\bowtie ^{f}J$$\end{document}. Our results provide new classes of commutative rings satisfying the above property.
引用
收藏
页码:689 / 697
页数:8
相关论文
共 50 条
  • [31] COMMUTATIVE BEZOUT DOMAINS IN WHICH ANY NONZERO PRIME IDEAL IS CONTAINED IN A FINITE SET OF MAXIMAL IDEALS
    Zabavsky, B., V
    Romaniv, O. M.
    CARPATHIAN MATHEMATICAL PUBLICATIONS, 2018, 10 (02) : 402 - 407
  • [33] LEFT PRIME WEAKLY REGULAR NEAR-RINGS
    Dheena, P.
    Sivakumar, D.
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (04): : 309 - 313
  • [34] On weakly 2-prime ideals in commutative rings
    Koc, Suat
    COMMUNICATIONS IN ALGEBRA, 2021, 49 (08) : 3387 - 3397
  • [35] On weakly S-prime ideals of commutative rings
    Almahdi, Fuad Ali Ahmed
    Bouba, El Mehdi
    Tamekkante, Mohammed
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2021, 29 (02): : 173 - 186
  • [36] PARTIAL CROSSED PRODUCTS AND FULLY WEAKLY PRIME RINGS
    Cortes, Wagner
    Soares, Marlon
    ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2016, 46 (04) : 1107 - 1139
  • [37] ON WEAKLY (m, n)-PRIME IDEALS OF COMMUTATIVE RINGS
    Khashan, Hani A.
    Celikel, Ece Yetkin
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2024, 61 (03) : 717 - 734
  • [38] On S-weakly prime ideals of commutative rings
    Mahdou, Najib
    Moutui, Moutu Abdou Salam
    Zahir, Youssef
    GEORGIAN MATHEMATICAL JOURNAL, 2022, 29 (03) : 397 - 405
  • [39] MULTIPLICATION RINGS AS RINGS IN WHICH IDEALS WITH PRIME RADICAL ARE PRIMARY
    GILMER, RW
    MOTT, JL
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1965, 114 (01) : 40 - &
  • [40] SKEW POLYNOMIAL RINGS WHICH ARE GENERALIZED ASANO PRIME RINGS
    Marubayashi, H.
    Muchtadi-Alamsyah, Intan
    Ueda, A.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2013, 12 (07)