Hashing to elliptic curves of j-invariant 1728

被引:0
|
作者
Dmitrii Koshelev
机构
[1] Versailles Saint-Quentin-en-Yvelines University,Versailles Laboratory of Mathematics
[2] Institute for Information Transmission Problems,Algebra and Number Theory Laboratory
[3] Moscow Institute of Physics and Technology,Department of Discrete Mathematics
来源
关键词
Finite fields; Pairing-based cryptography; Elliptic curves of ; -invariant 1728; Kummer surfaces; Rational curves; Weil restriction; Isogenies; 14E05; 14G15; 14G50; 14Q20; 14K02; 14H52;
D O I
暂无
中图分类号
学科分类号
摘要
This article generalizes the simplified Shallue–van de Woestijne–Ulas (SWU) method of a deterministic finite field mapping h:Fq→Ea(Fq)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$h\!: \mathbb {F}_{q} \to E_{a}(\mathbb {F}_{q})$\end{document} to the case of any elliptic Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document}-curve Ea : y2 = x3 − ax of j-invariant 1728. In comparison with the (classical) SWU method the simplified SWU method allows to avoid one quadratic residuosity test in the field Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document}, which is a quite painful operation in cryptography with regard to timing attacks. More precisely, in order to derive h we obtain a rational Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document}-curve C (and its explicit quite simple proper Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document}-parametrization) on the Kummer surface K′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$K^{\prime }$\end{document} associated with the direct product Ea×Ea′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${E_{a}} \times {E_{a}^{\prime }}$\end{document}, where Ea′\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$E_{a}^{\prime }$\end{document} is the quadratic Fq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q}$\end{document}-twist of Ea. Our approach of finding C is based on the fact that every curve Ea has a vertical Fq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathbb {F}_{q^{2}}$\end{document}-isogeny of degree 2.
引用
下载
收藏
页码:479 / 494
页数:15
相关论文
共 50 条