Nonlinear Eigenvalue Problems for (p, 2)-Equations and Laplace Equations with Perturbations
被引:0
|
作者:
Bien, Krzysztof
论文数: 0引用数: 0
h-index: 0
机构:
AGH Univ Krakow, Fac Appl Math, Dept Math Anal Computat Math & Probabilist Methods, Al A Mickiewicza 30, PL-30059 Krakow, PolandAGH Univ Krakow, Fac Appl Math, Dept Math Anal Computat Math & Probabilist Methods, Al A Mickiewicza 30, PL-30059 Krakow, Poland
Bien, Krzysztof
[1
]
机构:
[1] AGH Univ Krakow, Fac Appl Math, Dept Math Anal Computat Math & Probabilist Methods, Al A Mickiewicza 30, PL-30059 Krakow, Poland
Nonlinear eigenvalue problem;
Palais-Smale condition;
nonlinear operator;
(p;
2)-equation;
2)-equation along the same line;
continuous spectrum;
Pucci-Serrin three critical point theorem;
perturbation;
D O I:
10.1007/s00025-024-02176-6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We consider two types of nonlinear eigenvalue problems involving Laplace and p-Laplace operators (p>2). The main result establishes the existence of at least two nontrivial weak solutions in the case of the perturbed equation and the existence of a continuous spectrum in the case of the (p,2)-equation. In both cases, variational methods play a central role in our arguments.