Super-convergence and post-processing for mixed finite element approximations of the wave equation

被引:0
|
作者
Herbert Egger
Bogdan Radu
机构
[1] TU Darmstadt,Department of Mathematics
[2] TU Darmstadt,Graduate School for Computational Engineering
来源
Numerische Mathematik | 2018年 / 140卷
关键词
35L05; 35L50; 65L20; 65M60;
D O I
暂无
中图分类号
学科分类号
摘要
We consider the numerical approximation of acoustic wave propagation problems by mixed BDMk+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {BDM}_{k+1}$$\end{document}–Pk\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\text {P}_k$$\end{document} finite elements on unstructured meshes. Optimal convergence of the discrete velocity and super-convergence of the pressure are established. Based on these results, we propose a post-processing strategy that allows us to construct an improved pressure approximation from the numerical solution. Corresponding results are well-known for mixed finite element approximations of elliptic problems and we extend these analyses here to the hyperbolic problem under consideration. We also consider the subsequent time discretization by the Crank–Nicolson method and show that the analysis and the post-processing strategy can be generalized to the fully discrete schemes. Our proofs do not rely on duality arguments or inverse inequalities and the results therefore also apply for non-convex domains and non-uniform meshes.
引用
收藏
页码:427 / 447
页数:20
相关论文
共 50 条