We consider the numerical approximation of acoustic wave propagation problems by mixed BDMk+1\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {BDM}_{k+1}$$\end{document}–Pk\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\text {P}_k$$\end{document} finite elements on unstructured meshes. Optimal convergence of the discrete velocity and super-convergence of the pressure are established. Based on these results, we propose a post-processing strategy that allows us to construct an improved pressure approximation from the numerical solution. Corresponding results are well-known for mixed finite element approximations of elliptic problems and we extend these analyses here to the hyperbolic problem under consideration. We also consider the subsequent time discretization by the Crank–Nicolson method and show that the analysis and the post-processing strategy can be generalized to the fully discrete schemes. Our proofs do not rely on duality arguments or inverse inequalities and the results therefore also apply for non-convex domains and non-uniform meshes.
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Chinese Acad Sci, Grad Univ, Beijing 100190, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Chen, Hongtao
Jia, Shanghui
论文数: 0引用数: 0
h-index: 0
机构:
Cent Univ Finance & Econ, Sch Appl Math, Beijing 100081, Peoples R ChinaChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Jia, Shanghui
Xie, Hehu
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
Otto VonGuericke Univ Magdegurg, Inst Anal & Computat Math, D-39016 Magdeburg, GermanyChinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
Du, Guangzhi
Zuo, Liyun
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jinan, Sch Math Sci, Jinan 250022, Shandong, Peoples R ChinaShandong Normal Univ, Sch Math & Stat, Jinan 250014, Shandong, Peoples R China
机构:
Qilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R ChinaQilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
Liu, Xiaowei
Zhang, Jin
论文数: 0引用数: 0
h-index: 0
机构:
Shandong Normal Univ, Sch Math & Stat, Jinan 250014, Peoples R ChinaQilu Univ Technol, Shandong Acad Sci, Sch Math & Stat, Jinan 250353, Peoples R China
机构:
Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Nankai Univ, LPMC, Tianjin 300071, Peoples R ChinaNankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Xue, Yunhua
Wang, Cheng
论文数: 0引用数: 0
h-index: 0
机构:
Univ Massachusetts Dartmouth, Dept Math, N Dartmouth, MA 02747 USANankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
Wang, Cheng
Liu, Jian-Guo
论文数: 0引用数: 0
h-index: 0
机构:
Duke Univ, Dept Phys, Durham, NC 27708 USA
Duke Univ, Dept Math, Durham, NC 27708 USANankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China