Type 1 diabetes progression is associated with loss of CD3+CD56+ regulatory T cells that control CD8+ T-cell effector functions

被引:0
|
作者
Giuseppe Terrazzano
Sara Bruzzaniti
Valentina Rubino
Marianna Santopaolo
Anna Teresa Palatucci
Angela Giovazzino
Claudia La Rocca
Paola de Candia
Annibale Puca
Francesco Perna
Claudio Procaccini
Veronica De Rosa
Chiara Porcellini
Salvatore De Simone
Valentina Fattorusso
Antonio Porcellini
Enza Mozzillo
Riccardo Troncone
Adriana Franzese
Johnny Ludvigsson
Giuseppe Matarese
Giuseppina Ruggiero
Mario Galgani
机构
[1] Università degli Studi di Potenza,Dipartimento di Scienze
[2] Università degli Studi di Napoli Federico II,Dipartimento di Scienze Mediche Traslazionali
[3] Laboratorio di Immunologia,Dipartimento di Biologia
[4] Istituto per l’Endocrinologia e l’Oncologia Sperimentale G. Salvatore,Dipartimento di Medicina Clinica e Chirurgia
[5] Consiglio Nazionale delle Ricerche,European Laboratory for the Investigation of Food
[6] Università degli Studi di Napoli Federico II,Induced Disease
[7] Istituto di Ricovero e Cura a Carattere Scientifico MultiMedica,Division of Pediatrics, Department of Biomedical and Clinical Sciences
[8] Università degli Studi di Napoli Federico II,Dipartimento di Medicina Molecolare e Biotecnologie Mediche
[9] Unità di Neuroimmunologia,undefined
[10] Fondazione Santa Lucia,undefined
[11] Università degli Studi di Napoli Federico II,undefined
[12] Linköping University and Crown Princess Victoria Children’s Hospital,undefined
[13] Università degli Studi di Napoli Federico II,undefined
来源
Nature Metabolism | 2020年 / 2卷
关键词
D O I
暂无
中图分类号
学科分类号
摘要
An unresolved issue in autoimmunity is the lack of surrogate biomarkers of immunological self-tolerance for disease monitoring. Here, we show that peripheral frequency of a regulatory T cell population, characterized by the coexpression of CD3 and CD56 molecules (TR3-56), is reduced in individuals with new-onset type 1 diabetes (T1D). In three independent T1D cohorts, we find that low frequency of circulating TR3-56 cells is associated with reduced beta-cell function and with the presence of diabetic ketoacidosis. Since autoreactive CD8+ T cells mediate disruption of insulin-producing beta cells1–3, we demonstrate that TR3-56 cells can suppress CD8+ T cell functions in vitro by reducing the levels of intracellular reactive oxygen species. The suppressive function, phenotype and transcriptional signature of TR3-56 cells are also altered in children with T1D. Together, our findings indicate that TR3-56 cells constitute a regulatory cell population that controls CD8+ effector functions, whose peripheral frequency may represent a traceable biomarker for monitoring immunological self-tolerance in T1D.
引用
收藏
页码:142 / 152
页数:10
相关论文
共 50 条
  • [11] Harnessing CD8+ T-cell exhaustion to treat type 1 diabetes
    Kwong, Chun-Ting J.
    Selck, Claudia
    Tahija, Krisna
    McAnaney, Lachlan J.
    Le, Dan, V
    Kay, Thomas W. H.
    Thomas, Helen E.
    Krishnamurthy, Balasubramanian
    IMMUNOLOGY AND CELL BIOLOGY, 2021, 99 (05): : 486 - 495
  • [12] Changes in the effector and regulatory functions of CD8+ T cells in visceral leishmaniasis patients
    Singh, B.
    Kumar, R.
    Engwerda, C.
    Sundar, S.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2016, 46 : 507 - 507
  • [13] THE REGULATORY FUNCTIONS OF CD4+ AND CD8+ T-CELL SUBSETS IN IMMUNE CLASS REGULATION
    BRETSCHER, PA
    RESEARCH IN IMMUNOLOGY, 1991, 142 (01): : 45 - 50
  • [14] Malaria-induced CD4+ and CD8+ regulatory T cells suppress effector T cells
    Brandi, J.
    Lehmann, C.
    Riehn, M.
    Jacobs, T.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2019, 49 : 32 - 33
  • [15] A novel human CD3+CD56+ regulatory subset: involvement in the pathogenesis of type 1 diabetes
    Santopaolo, M.
    Bruzzaniti, S.
    Rubino, V.
    De Simone, S.
    Palatucci, A. T.
    Giovazzino, A.
    Franzese, A.
    Mozzillo, E.
    Terrazzano, G.
    Ruggiero, G.
    Matarese, G.
    Galgani, M.
    DIABETOLOGIA, 2017, 60 : S199 - S199
  • [16] Distinct functions of CD4+ and CD8+ regulatory T cells in autoimmunity
    Xu, Ziyang
    Su, Bing
    NATURE IMMUNOLOGY, 2025, 26 (02) : 159 - 160
  • [17] Functional and Vβ repertoire characterization of human CD8+ T-cell subsets with natural killer cell markers, CD56+ CD57- T cells, CD56+ CD57+ T cells and CD56- CD57+ T cells
    Takayama, E
    Koike, Y
    Ohkawa, T
    Majima, T
    Fukasawa, M
    Shinomiya, N
    Yamaguchi, T
    Konishi, M
    Hiraide, H
    Tadakuma, T
    Seki, S
    IMMUNOLOGY, 2003, 108 (02) : 211 - 219
  • [18] Viral MHC class I inhibition evades CD8+ T-cell effector responses in vivo but not CD8+ T-cell priming
    Gainey, Maria D.
    Rivenbark, Joshua G.
    Cho, Hyelim
    Yang, Liping
    Yokoyama, Wayne M.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (47) : E3260 - E3267
  • [19] Human CD4+CD25+ T cells regulate CD8+ T-cell activation
    Câmara, NOS
    Ng, WF
    Hernandes-Fuentes, M
    Eren, E
    Lechler, RI
    TRANSPLANTATION PROCEEDINGS, 2002, 34 (07) : 2858 - 2860
  • [20] Immune-regulating, effector CD8+ T cells in type I diabetes
    Achari, Yannis
    M S-MEDECINE SCIENCES, 2019, 35 (04): : 383 - 384