Sparsifying machine learning models identify stable subsets of predictive features for behavioral detection of autism

被引:0
|
作者
Sebastien Levy
Marlena Duda
Nick Haber
Dennis P. Wall
机构
[1] Stanford University,Department of Pediatrics, Division of Systems Medicine
[2] Stanford University,Department of Biomedical Data Science
[3] Institute for Computational and Mathematical Engineering,undefined
[4] Stanford University,undefined
来源
关键词
Autism; Autism spectrum disorder; ASD; Autism screening; Autism diagnosis; Machine learning; Sparse machine learning;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [31] Chronic diseases monitoring and diagnosis system based on features selection and machine learning predictive models
    Sahar A. EL-Rahman
    Ala Saleh Alluhaidan
    Reem A. AlRashed
    Duna N. AlZunaytan
    Soft Computing, 2022, 26 : 6175 - 6199
  • [32] Chronic diseases monitoring and diagnosis system based on features selection and machine learning predictive models
    El-Rahman, Sahar A.
    Alluhaidan, Ala Saleh
    AlRashed, Reem A.
    AlZunaytan, Duna N.
    SOFT COMPUTING, 2022, 26 (13) : 6175 - 6199
  • [33] Applying Machine Learning Models to Identify Forest Cover
    Johnson, Peter
    Abdelfattah, Eman
    2018 9TH IEEE ANNUAL UBIQUITOUS COMPUTING, ELECTRONICS & MOBILE COMMUNICATION CONFERENCE (UEMCON), 2018, : 471 - 474
  • [34] Development of Predictive Models using Machine Learning Algorithms for Food Adulterants Bacteria Detection
    Amado, Timothy M.
    Burman, Ma Rica
    Chicote, Relamae F.
    Espenida, Sheila May C.
    Masangcay, Honeyleth L.
    Ventura, Camille H.
    Tolentino, Lean Karlo S.
    Padilla, Maria Victoria C.
    Madrigal, Gilfred Allen M.
    Enriquez, Lejan Alfred C.
    2019 IEEE 11TH INTERNATIONAL CONFERENCE ON HUMANOID, NANOTECHNOLOGY, INFORMATION TECHNOLOGY, COMMUNICATION AND CONTROL, ENVIRONMENT, AND MANAGEMENT (HNICEM), 2019,
  • [35] Credit Card Fraud Detection Using Machine Learning and Predictive Models: A Comparative Study
    Sontakke, Atharv
    Yewale, Mrunali
    Zambare, Sejal
    Tendulkar, Sakshi
    Chaudhari, Anagha
    HYBRID INTELLIGENT SYSTEMS, HIS 2021, 2022, 420 : 171 - 180
  • [36] Spammer Group Detection Using Machine Learning Technology for Observation of New Spammer Behavioral Features
    Cheng, Li-Chen
    Hu, Hsiao-Wei
    Wu, Chia-Chi
    JOURNAL OF GLOBAL INFORMATION MANAGEMENT, 2021, 29 (02) : 61 - 76
  • [37] A Comparative Analysis of Machine Learning Algorithms for Breast Cancer Detection and Identification of Key Predictive Features
    Kumar, Amit
    Saini, Rashmi
    Kumar, Rajeev
    TRAITEMENT DU SIGNAL, 2024, 41 (01) : 127 - 140
  • [38] Machine Learning Models Identify Multimodal Measurements Highly Predictive of Transdiagnostic Symptom Severity for Mood, Anhedonia, and Anxiety
    Mellem, Monika S.
    Liu, Yuelu
    Gonzalez, Humberto
    Kollada, Matthew
    Martin, William J.
    Ahammad, Parvez
    BIOLOGICAL PSYCHIATRY-COGNITIVE NEUROSCIENCE AND NEUROIMAGING, 2020, 5 (01) : 56 - 67
  • [39] Autism Spectrum Disorder Detection with Machine Learning Methods
    Erkan, Ugur
    Thanh, Dang N. H.
    CURRENT PSYCHIATRY RESEARCH AND REVIEWS, 2019, 15 (04) : 297 - 308
  • [40] Machine Learning Models for Drowsiness Detection
    Meda, Harshit
    Ganesh, Janapareddy Mohan Padmanabha
    Sahani, Ashish
    2021 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE (I2MTC 2021), 2021,