Maximum likelihood characterization of rotationally symmetric distributions on the sphere

被引:0
|
作者
Mitia Duerinckx
Christophe Ley
机构
[1] Université Libre de Bruxelles,Département de Mathématique
[2] Université Libre de Bruxelles,E.C.A.R.E.S. and Département de Mathématique
来源
Sankhya A | 2012年 / 74卷 / 2期
关键词
Cauchy’s functional equation; characterization theorem; Fisher-von Mises-Langevin distribution; maximum likelihood estimator; rotationally symmetric distributions on the sphere; Primary 62H05; 62E10; Secondary 60E05;
D O I
10.1007/s13171-012-0004-x
中图分类号
学科分类号
摘要
A classical characterization result, which can be traced back to Gauss, states that the maximum likelihood estimator (MLE) of the location parameter equals the sample mean for any possible univariate samples of any possible sizes n if and only if the samples are drawn from a Gaussian population. A similar result, in the two-dimensional case, is given in von Mises (1918) for the Fisher-von Mises-Langevin (FVML) distribution, the equivalent of the Gaussian law on the unit circle. Half a century later, Bingham and Mardia (1975) extend the result to FVML distributions on the unit sphere \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}^{k-1}:=\{{\ensuremath{\mathbf{v}}}\in{\mathbb R}^k:{\ensuremath{\mathbf{v}}}'{\ensuremath{\mathbf{v}}}=1\}$\end{document}, k ≥ 2. In this paper, we present a general MLE characterization theorem for a large subclass of rotationally symmetric distributions on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\mathcal{S}^{k-1}$\end{document}, k ≥ 2, including the FVML distribution.
引用
收藏
页码:249 / 262
页数:13
相关论文
共 50 条
  • [41] MAXIMUM LIKELIHOOD PARAMETER ESTIMATION FOR THE MIXTURES OF NORMAL DISTRIBUTIONS
    Rahman, Mezbahur
    Mahzabeen, Sabiha
    ADVANCES AND APPLICATIONS IN STATISTICS, 2018, 53 (05) : 501 - 518
  • [42] Fitting distributions using maximum likelihood: Methods and packages
    Denis Cousineau
    Scott Brown
    Andrew Heathcote
    Behavior Research Methods, Instruments, & Computers, 2004, 36 : 742 - 756
  • [43] Bootstrap maximum likelihood for quasi-stationary distributions
    Guo, Guangbao
    Allison, James
    Zhu, Lixing
    JOURNAL OF NONPARAMETRIC STATISTICS, 2019, 31 (01) : 64 - 87
  • [44] MAXIMUM LIKELIHOOD ESTIMATION FOR MIXTURES OF 2 NORMAL DISTRIBUTIONS
    DICK, NP
    BOWDEN, DC
    BIOMETRICS, 1973, 29 (03) : 610 - 610
  • [45] On Projections of Gaussian Distributions using Maximum Likelihood Criteria
    Zhou, Haolang
    Karakos, Damianos
    Khudanpur, Sanjeev
    Andreou, Andreas G.
    Priebe, Carey E.
    2009 INFORMATION THEORY AND APPLICATIONS WORKSHOP, 2009, : 436 - +
  • [46] MAXIMUM LIKELIHOOD ESTIMATION OF 2 STOCHASTICALLY ORDERED DISTRIBUTIONS
    BRUNK, HD
    FRANCK, WE
    HANSON, DL
    HOGG, RV
    ANNALS OF MATHEMATICAL STATISTICS, 1965, 36 (05): : 1598 - &
  • [47] Fitting distributions using maximum likelihood: Methods and packages
    Cousineau, D
    Brown, S
    Heathcote, A
    BEHAVIOR RESEARCH METHODS INSTRUMENTS & COMPUTERS, 2004, 36 (04): : 742 - 756
  • [48] Maximum likelihood inference for seed and pollen dispersal distributions
    Jones, B
    JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2003, 8 (02) : 170 - 183
  • [49] Quantile maximum likelihood estimation of response time distributions
    Andrew Heathcote
    Scott Brown
    D. J. K. Mewhort
    Psychonomic Bulletin & Review, 2002, 9 : 394 - 401
  • [50] MAXIMUM-LIKELIHOOD ESTIMATES FOR THE PARAMETERS OF MIXTURE DISTRIBUTIONS
    LEYTHAM, KM
    WATER RESOURCES RESEARCH, 1984, 20 (07) : 896 - 902