Modified Algorithm to Compute Pareto-Optimal Vectors

被引:0
|
作者
V. N. Sastry
S. Ismail Mohideen
机构
[1] Regional Engineering College,Department of Mathematics and Computer Applications
[2] Tiruchirappalli,Department of Mathematics
[3] Jamal Mohamed College,undefined
关键词
Pareto-minimum vectors; multiple objectives; network optimization; multiple-criteria decision making;
D O I
暂无
中图分类号
学科分类号
摘要
Finding Pareto-minimum vectors among r given vectors, each of dimension m, is a fundamental problem in multiobjective optimization problems or multiple-criteria decision-making problems. Corley and Moon (Ref. 1) have given an algorithm for finding all the Pareto-minimum paths of a multiobjective network optimization problem from the initial node to any other node. It uses another algorithm by Corley and Moon, which actually computes the Pareto-minimum vectors. We observed that the latter algorithm is incorrect. In this note, we correct the algorithm for computing Pareto-minimum vectors and present a modified algorithm.
引用
收藏
页码:241 / 244
页数:3
相关论文
共 50 条
  • [31] PARTICIPATION RULES FOR PARETO-OPTIMAL CLUBS
    HILLMAN, AL
    SWAN, PL
    [J]. JOURNAL OF PUBLIC ECONOMICS, 1983, 20 (01) : 55 - 76
  • [32] Pareto-optimal alignment of biological sequences
    Roytberg, MA
    Semionenkov, MN
    Tabolina, OY
    [J]. BIOFIZIKA, 1999, 44 (04): : 581 - 594
  • [33] PARETO-OPTIMAL PROFIT-SHARING
    VANDEBROEK, M
    [J]. ASTIN BULLETIN, VOL 18, NO 1, APRIL 1988, 1988, : 47 - 55
  • [34] Pareto-optimal phylogenetic tree reconciliation
    Libeskind-Hadas, Ran
    Wu, Yi-Chieh
    Bansal, Mukul S.
    Kellis, Manolis
    [J]. BIOINFORMATICS, 2014, 30 (12) : 87 - 95
  • [35] Pareto-optimal methods for gene ranking
    Hero, AO
    Fleury, G
    [J]. JOURNAL OF VLSI SIGNAL PROCESSING SYSTEMS FOR SIGNAL IMAGE AND VIDEO TECHNOLOGY, 2004, 38 (03): : 259 - 275
  • [36] Pareto-Optimal Active Learning with Cost
    Adams, Stephen
    Cody, Tyler
    Beling, Peter A.
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2021, : 1519 - 1526
  • [37] APPROXIMATION OF A SET OF PARETO-OPTIMAL SOLUTIONS
    NEFEDOV, VN
    [J]. USSR COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 1986, 26 (01): : 99 - 107
  • [38] Pareto-optimal assignments by hierarchical exchange
    Bade, Sophie
    [J]. SOCIAL CHOICE AND WELFARE, 2014, 42 (02) : 279 - 287
  • [39] Pareto-optimal hardware for substitution boxes
    Nedjah, N
    Mourelle, LD
    [J]. ITCC 2005: International Conference on Information Technology: Coding and Computing, Vol 1, 2005, : 614 - 619
  • [40] Motile curved bacteria are Pareto-optimal
    Schuech, Rudi
    Hoehfurtner, Tatjana
    Smith, David J.
    Humphries, Stuart
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2019, 116 (29) : 14440 - 14447