Modified Algorithm to Compute Pareto-Optimal Vectors

被引:0
|
作者
V. N. Sastry
S. Ismail Mohideen
机构
[1] Regional Engineering College,Department of Mathematics and Computer Applications
[2] Tiruchirappalli,Department of Mathematics
[3] Jamal Mohamed College,undefined
关键词
Pareto-minimum vectors; multiple objectives; network optimization; multiple-criteria decision making;
D O I
暂无
中图分类号
学科分类号
摘要
Finding Pareto-minimum vectors among r given vectors, each of dimension m, is a fundamental problem in multiobjective optimization problems or multiple-criteria decision-making problems. Corley and Moon (Ref. 1) have given an algorithm for finding all the Pareto-minimum paths of a multiobjective network optimization problem from the initial node to any other node. It uses another algorithm by Corley and Moon, which actually computes the Pareto-minimum vectors. We observed that the latter algorithm is incorrect. In this note, we correct the algorithm for computing Pareto-minimum vectors and present a modified algorithm.
引用
收藏
页码:241 / 244
页数:3
相关论文
共 50 条
  • [1] Modified algorithm to compute Pareto-optimal vectors
    Sastry, VN
    Mohideen, SI
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 103 (01) : 241 - 244
  • [2] A new algorithm to compute pareto-optimal paths in a multi objective fuzzy weighted network
    Kumar M.K.
    Sastry V.N.
    [J]. OPSEARCH, 2013, 50 (3) : 297 - 318
  • [3] A BICRITERION PARETO-OPTIMAL PATH ALGORITHM
    TUNG, CT
    CHEW, KL
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 1988, 5 (02) : 166 - 172
  • [4] IMPLEMENTATION OF A DECENTRALIZED PARETO-OPTIMAL ALGORITHM
    KUMAR, LN
    DOULIGERIS, C
    DEVELEKOS, G
    [J]. COMPUTER COMMUNICATIONS, 1994, 17 (08) : 600 - 610
  • [5] A MULTICRITERIA PARETO-OPTIMAL PATH ALGORITHM
    TUNG, CT
    CHEW, KL
    [J]. EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 1992, 62 (02) : 203 - 209
  • [6] Pareto-Optimal Design of Damping Controllers Using Modified Artificial Immune Algorithm
    Khaleghi, Milad
    Farsangi, Malihe M.
    Nezamabadi-pour, Hossein
    Lee, Kwang Y.
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART C-APPLICATIONS AND REVIEWS, 2011, 41 (02): : 240 - 250
  • [7] Finding pareto-optimal set of distributed vectors with minimum disclosure
    Sehgal, SK
    Pal, AK
    [J]. DISTRIBUTED COMPUTING - IWDC 2004, PROCEEDINGS, 2004, 3326 : 144 - 149
  • [8] Obtaining accurate classifiers with Pareto-optimal and near Pareto-optimal rules
    Kuwajima I.
    Nojima Y.
    Ishibuchi H.
    [J]. Artificial Life and Robotics, 2008, 13 (01) : 315 - 319
  • [9] A MULTICRITERIA PARETO-OPTIMAL ALGORITHM FOR THE TRAVELING SALESMAN PROBLEM
    TUNG, CT
    [J]. ASIA-PACIFIC JOURNAL OF OPERATIONAL RESEARCH, 1994, 11 (01) : 103 - 115
  • [10] Pareto-optimal Allocation
    Oberender, Peter
    Goetz, Andreas
    [J]. GESUNDHEITSOEKONOMIE UND QUALITAETSMANAGEMENT, 2013, 18 (04): : 154 - 154