On multifractal formalism for self-similar measures with overlaps

被引:0
|
作者
Julien Barral
De-Jun Feng
机构
[1] Université Sorbonne Paris Nord,Laboratoire de Géométrie, Analyse et Applications
[2] CNRS,Department of Mathematics
[3] UMR 7539,undefined
[4] The Chinese University of Hong Kong,undefined
来源
Mathematische Zeitschrift | 2021年 / 298卷
关键词
Multifractal formalism; Self-similar measures; Hausdorff dimension; Asymptotically weak separation condition; 28A80; 37C45;
D O I
暂无
中图分类号
学科分类号
摘要
Let μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} be a self-similar measure generated by an IFS Φ={ϕi}i=1ℓ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi =\{\phi _i\}_{i=1}^\ell $$\end{document} of similarities on Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {R}}}^d$$\end{document} (d≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 1$$\end{document}). When Φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varPhi $$\end{document} is dimensional regular (see Definition 1.1), we give an explicit formula for the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-spectrum τμ(q)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mu (q)$$\end{document} of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} over [0, 1], and show that τμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\tau _\mu $$\end{document} is differentiable over (0, 1] and the multifractal formalism holds for μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} at any α∈[τμ′(1),τμ′(0+)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha \in [\tau _\mu '(1),\tau _\mu '(0+)]$$\end{document}. We also verify the validity of the multifractal formalism of μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mu $$\end{document} over [τμ′(∞),τμ′(0+)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$[\tau _\mu '(\infty ),\tau _\mu '(0+)]$$\end{document} for two new classes of overlapping algebraic IFSs by showing that the asymptotically weak separation condition holds. For one of them, the proof appeals to the recent result of Shmerkin (Ann. Math. (2) 189(2):319–391, 2019) on the Lq\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L^q$$\end{document}-spectrum of self-similar measures.
引用
收藏
页码:359 / 383
页数:24
相关论文
共 50 条
  • [41] Multiple codings of self-similar sets with overlaps
    Dajani, Karma
    Jiang, Kan
    Kong, Derong
    Li, Wenxia
    Xi, Lifeng
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2021, 124
  • [42] Lipschitz classification of self-similar sets with overlaps
    Lian Wang
    Dong-Hong Xiong
    [J]. Monatshefte für Mathematik, 2021, 195 : 343 - 352
  • [43] Hausdorff dimension of self-similar sets with overlaps
    Deng QiRong
    Harding, John
    Hu TianYou
    [J]. SCIENCE IN CHINA SERIES A-MATHEMATICS, 2009, 52 (01): : 119 - 128
  • [44] Lipschitz classification of self-similar sets with overlaps
    Wang, Lian
    Xiong, Dong-Hong
    [J]. MONATSHEFTE FUR MATHEMATIK, 2021, 195 (02): : 343 - 352
  • [45] ON A KIND OF SELF-SIMILAR SETS WITH COMPLETE OVERLAPS
    Kong, D.
    Yao, Y.
    [J]. ACTA MATHEMATICA HUNGARICA, 2021, 163 (02) : 601 - 622
  • [46] Hausdorff dimension of self-similar sets with overlaps
    QiRong Deng
    John Harding
    TianYou Hu
    [J]. Science in China Series A: Mathematics, 2009, 52
  • [47] Multiple codings of self-similar sets with overlaps
    Dajani, Karma
    Jiang, Kan
    Kong, Derong
    Li, Wenxia
    Xi, Lifeng
    [J]. Advances in Applied Mathematics, 2021, 124
  • [48] Hausdorff dimension of self-similar sets with overlaps
    DENG QiRong1
    [J]. Science China Mathematics, 2009, (01) : 119 - 128
  • [49] On a kind of self-similar sets with complete overlaps
    D. Kong
    Y. Yao
    [J]. Acta Mathematica Hungarica, 2021, 163 : 601 - 622
  • [50] Hausdorff dimension of self-similar sets with overlaps
    Ngai, SM
    Wang, Y
    [J]. JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2001, 63 : 655 - 672