Motivated by the study of the Kahan–Hirota–Kimura discretisation of the Euler top, we characterise the growth and integrability properties of a collection of elements in the Cremona group of a complex projective 3-space using techniques from algebraic geometry. This collection consists of maps obtained by composing the standard Cremona transformation c3∈Bir(P3)\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\,\textrm{c}\,}}_3\in {{\,\textrm{Bir}\,}}(\mathbb {P}^3)$$\end{document} with projectivities that permute the fixed points of c3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\,\textrm{c}\,}}_3$$\end{document} and the points over which c3\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${{\,\textrm{c}\,}}_3$$\end{document} performs a divisorial contraction. Specifically, we show that three behaviour are possible: (A) integrable with quadratic degree growth and two invariants, (B) periodic with two-periodic degree sequences and more than two invariants, and (C) non-integrable with submaximal degree growth and one invariant.