Growth and Integrability of Some Birational Maps in Dimension Three

被引:0
|
作者
Michele Graffeo
Giorgio Gubbiotti
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] Università degli Studi di Milano,Dipartimento di Matematica “Federigo Enriques”
[3] INFN Sezione di Milano,undefined
来源
Annales Henri Poincaré | 2024年 / 25卷
关键词
Primary 14H70; Secondary 14E07; 14E15; 39A36;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the study of the Kahan–Hirota–Kimura discretisation of the Euler top, we characterise the growth and integrability properties of a collection of elements in the Cremona group of a complex projective 3-space using techniques from algebraic geometry. This collection consists of maps obtained by composing the standard Cremona transformation c3∈Bir(P3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{c}\,}}_3\in {{\,\textrm{Bir}\,}}(\mathbb {P}^3)$$\end{document} with projectivities that permute the fixed points of c3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{c}\,}}_3$$\end{document} and the points over which c3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{c}\,}}_3$$\end{document} performs a divisorial contraction. Specifically, we show that three behaviour are possible: (A) integrable with quadratic degree growth and two invariants, (B) periodic with two-periodic degree sequences and more than two invariants, and (C) non-integrable with submaximal degree growth and one invariant.
引用
收藏
页码:1733 / 1793
页数:60
相关论文
共 50 条
  • [21] Degree growth of matrix inversion: Birational maps of symmetric, cyclic matrices
    Bedford, Eric
    Kim, Kyounghee
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2008, 21 (04) : 977 - 1013
  • [22] Motivic invariants of birational maps
    Lin, Hsueh-Yung
    Shinder, Evgeny
    [J]. ANNALS OF MATHEMATICS, 2024, 199 (01) : 445 - 478
  • [23] Anti-integrability for Three-Dimensional Quadratic Maps
    Hampton, Amanda E.
    Meiss, James D.
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2022, 21 (01): : 650 - 675
  • [24] Power linear Keller maps of dimension three
    Cheng, CCA
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (10) : 2819 - 2822
  • [25] Polynomial maps with nilpotent Jacobians in dimension three
    Yan, Dan
    Tang, Guoping
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 489 : 298 - 323
  • [26] BIRATIONAL MAPS OF 3-FOLDS
    Chen, Jungkai Alfred
    [J]. TAIWANESE JOURNAL OF MATHEMATICS, 2015, 19 (06): : 1619 - 1642
  • [27] Degree Complexity of a Family of Birational Maps
    Eric Bedford
    Kyounghee Kim
    Tuyen Trung Truong
    Nina Abarenkova
    Jean-Marie Maillard
    [J]. Mathematical Physics, Analysis and Geometry, 2008, 11 : 53 - 71
  • [28] Effective criteria for bigraded birational maps
    Botbol, Nicolas
    Buse, Laurent
    Chardin, Marc
    Hassanzadeh, Seyed Hamid
    Simis, Aron
    Quang Hoa Tran
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2017, 81 : 69 - 87
  • [29] On special quadratic birational transformations whose base locus has dimension at most three
    Stagliano, Giovanni
    [J]. RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2013, 24 (03) : 409 - 436
  • [30] Cycle Class Maps and Birational Invariants
    Hassett, Brendan
    Tschinkel, Yuri
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2021, 74 (12) : 2675 - 2698