Growth and Integrability of Some Birational Maps in Dimension Three

被引:0
|
作者
Michele Graffeo
Giorgio Gubbiotti
机构
[1] Politecnico di Milano,Dipartimento di Matematica
[2] Università degli Studi di Milano,Dipartimento di Matematica “Federigo Enriques”
[3] INFN Sezione di Milano,undefined
来源
Annales Henri Poincaré | 2024年 / 25卷
关键词
Primary 14H70; Secondary 14E07; 14E15; 39A36;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by the study of the Kahan–Hirota–Kimura discretisation of the Euler top, we characterise the growth and integrability properties of a collection of elements in the Cremona group of a complex projective 3-space using techniques from algebraic geometry. This collection consists of maps obtained by composing the standard Cremona transformation c3∈Bir(P3)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{c}\,}}_3\in {{\,\textrm{Bir}\,}}(\mathbb {P}^3)$$\end{document} with projectivities that permute the fixed points of c3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{c}\,}}_3$$\end{document} and the points over which c3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\,\textrm{c}\,}}_3$$\end{document} performs a divisorial contraction. Specifically, we show that three behaviour are possible: (A) integrable with quadratic degree growth and two invariants, (B) periodic with two-periodic degree sequences and more than two invariants, and (C) non-integrable with submaximal degree growth and one invariant.
引用
收藏
页码:1733 / 1793
页数:60
相关论文
共 50 条