A new methodology for constrained parsimonious model-based clustering is introduced, where some tuning parameter allows to control the strength of these constraints. The methodology includes the 14 parsimonious models that are often applied in model-based clustering when assuming normal components as limit cases. This is done in a natural way by filling the gap among models and providing a smooth transition among them. The methodology provides mathematically well-defined problems and is also useful to prevent us from obtaining spurious solutions. Novel information criteria are proposed to help the user in choosing parameters. The interest of the proposed methodology is illustrated through simulation studies and a real-data application on COVID data.
机构:
Fujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350108, Fujian, Peoples R ChinaFujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350108, Fujian, Peoples R China
Chen, Lifei
Jiang, Qingshan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Acad Sci, Shenzhen Key Lab High Performance Data Min, Shenzhen Inst Adv Technol, Shenzhen 518055, Peoples R ChinaFujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350108, Fujian, Peoples R China
Jiang, Qingshan
Wang, Shengrui
论文数: 0引用数: 0
h-index: 0
机构:
Univ Sherbrooke, Dept Comp Sci, Sherbrooke, PQ J1K 2R1, CanadaFujian Normal Univ, Sch Math & Comp Sci, Fuzhou 350108, Fujian, Peoples R China
机构:
PSR, Rio De Janeiro, Brazil
Pontificia Univ Catolica Rio De Janeiro PUC Rio, Dept Informat, Rio De Janeiro, BrazilPSR, Rio De Janeiro, Brazil
Sampaio, Raphael Araujo
Garcia, Joaquim Dias
论文数: 0引用数: 0
h-index: 0
机构:
PSR, Rio De Janeiro, Brazil
Dept Engn Elect, LAMPS, PUC Rio, Rio De Janeiro, BrazilPSR, Rio De Janeiro, Brazil
Garcia, Joaquim Dias
Poggi, Marcus
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio De Janeiro PUC Rio, Dept Informat, Rio De Janeiro, BrazilPSR, Rio De Janeiro, Brazil
Poggi, Marcus
Vidal, Thibaut
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Catolica Rio De Janeiro PUC Rio, Dept Informat, Rio De Janeiro, Brazil
CIRRELT & SCALE AI Chair Data Driven Supply Chains, Dept Math & Ind Engn, Polytech Montreal, Montreal, PQ, CanadaPSR, Rio De Janeiro, Brazil