Multi-scale attention vehicle re-identification

被引:1
|
作者
Aihua Zheng
Xianmin Lin
Jiacheng Dong
Wenzhong Wang
Jin Tang
Bin Luo
机构
[1] Anhui University,School of Computer Science and Technology
来源
关键词
Vehicle re-identification; Multi-scale; Attention;
D O I
暂无
中图分类号
学科分类号
摘要
Vehicle re-identification (Re-ID) aims to match the vehicle images with the same identity captured by the non-overlapping surveillance cameras. Most existing vehicle Re-ID methods focus on effective deep network architectures to extract discriminative features from single-scale images. However, these methods ignored the complementary information from different scales, which is a crucial factor in computer vision tasks. Attention mechanism, a commonly used technique in recognition and detection tasks, can selectively focus on discriminative local cues of the image. In this work, we propose a multi-scale attention framework which jointly considers multi-scale mechanism and attention technique for vehicle Re-ID. Specifically, we exploit multi-scale mechanism in feature maps, which can acquire more comprehensive representations for fusing global and local cues. Meanwhile, we exploit attention blocks on each scale subnetwork, which aims to mine complementary and discriminative information. We conduct extensive experiments on three vehicle datasets, VeRi-776, VehicleID and PKU-VD. The promising results demonstrate the effectiveness of the proposed method and yield to a new state of the art for vehicle Re-ID.
引用
下载
收藏
页码:17489 / 17503
页数:14
相关论文
共 50 条
  • [21] MSFFT: Multi-Scale Feature Fusion Transformer for cross platform vehicle re-identification
    Holla, B. Ashutosh
    Pai, M. M. Manohara
    Verma, Ujjwal
    Pai, Radhika M.
    NEUROCOMPUTING, 2024, 582
  • [22] Multi-scale feature representation for person re-identification
    Lu J.
    Wang H.-Y.
    Chen X.
    Zhang K.-B.
    Liu W.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (12): : 3015 - 3022
  • [23] Multi-scale feature combination for person re-identification
    Huang, Bailiang
    Piao, Yan
    Zhang, Hao
    Tang, Yanfeng
    IET IMAGE PROCESSING, 2022, 16 (07) : 2001 - 2011
  • [24] Multi-Scale Convolutional Network for Person Re-identification
    Wu, Qiong
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMPUTER NETWORKS AND COMMUNICATION TECHNOLOGY (CNCT 2016), 2016, 54 : 826 - 835
  • [25] Multi-scale joint learning for person re-identification
    Xie P.
    Xu X.
    Beijing Hangkong Hangtian Daxue Xuebao/Journal of Beijing University of Aeronautics and Astronautics, 2021, 47 (03): : 613 - 622
  • [26] Multi-Scale Relation Network for Person Re-identification
    Ma, Yi
    Bai, Tian
    Zhang, Wenyu
    Li, Shuang
    Hu, Jian
    Lu, Mingzhe
    26TH IEEE SYMPOSIUM ON COMPUTERS AND COMMUNICATIONS (IEEE ISCC 2021), 2021,
  • [27] MULTI-SCALE VEHICLE RE-IDENTIFICATION USING SELF-ADAPTING LABEL SMOOTHING REGULARIZATION
    Xu, Yue
    Jiang, Na
    Zhang, Lei
    Zhou, Zhong
    Wu, Wei
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 2117 - 2121
  • [28] Contextual Multi-Scale Feature Learning for Person Re-Identification
    Fan, Baoyu
    Wang, Li
    Zhang, Runze
    Guo, Zhenhua
    Zhao, Yaqian
    Li, Rengang
    Gong, Weifeng
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 655 - 663
  • [29] Multi-scale Deep Learning Architectures for Person Re-identification
    Qian, Xuelin
    Fu, Yanwei
    Jiang, Yu-Gang
    Xiang, Tao
    Xue, Xiangyang
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 5409 - 5418
  • [30] Discriminative multi-scale adjacent feature for person re-identification
    Mengzan Qi
    Sixian Chan
    Feng Hong
    Yuan Yao
    Xiaolong Zhou
    Complex & Intelligent Systems, 2024, 10 : 4557 - 4569