On Cohen braids

被引:0
|
作者
V. G. Bardakov
V. V. Vershinin
J. Wu
机构
[1] Siberian Branch of the Russian Academy of Sciences,Sobolev Institute of Mathematics
[2] Novosibirsk State University,Laboratory of Quantum Topology
[3] Chelyabinsk State University,Département des Sciences Mathématiques
[4] Université Montpellier 2,Department of Mathematics
[5] National University of Singapore,undefined
关键词
Exact Sequence; STEKLOV Institute; Short Exact Sequence; Braid Group; Link Group;
D O I
暂无
中图分类号
学科分类号
摘要
For a general connected surface M and an arbitrary braid α from the surface braid group Bn−1(M), we study the system of equations d1β = … = dnβ = α, where the operation di is the removal of the ith strand. We prove that for M ≠ S2 and M ≠ ℝP2, this system of equations has a solution β ∈ Bn(M) if and only if d1α = … = dn−1α. We call the set of braids satisfying the last system of equations Cohen braids. We study Cohen braids and prove that they form a subgroup. We also construct a set of generators for the group of Cohen braids. In the cases of the sphere and the projective plane we give some examples for a small number of strands.
引用
收藏
页码:16 / 32
页数:16
相关论文
共 50 条
  • [21] Twisted braids
    Xue, Shudan
    Deng, Qingying
    INVOLVE, A JOURNAL OF MATHEMATICS, 2024, 17 (04):
  • [22] CONJUGACY OF BRAIDS
    STYSHNEV, VB
    MATHEMATICAL NOTES, 1990, 47 (1-2) : 193 - 198
  • [23] On singular braids
    Zhu, J
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1997, 6 (03) : 427 - 440
  • [24] SPLIT BRAIDS
    HUMPHRIES, SP
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1991, 113 (01) : 21 - 26
  • [25] On the recognition of braids
    Gaifullin, AA
    Manturov, VO
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2002, 11 (08) : 1193 - 1209
  • [26] Flaxen Braids
    Davidson, Letha M.
    LIBRARY JOURNAL, 1937, 62 (19) : 838 - 838
  • [27] Counter Braids
    Lu, Yi
    Montanari, Andrea
    Prabhakar, Balaji
    2008 IEEE INFORMATION THEORY WORKSHOP, 2008, : 220 - +
  • [28] Braids and signatures
    Gambaudo, Jean-Marc
    Ghys, Etienne
    BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 2005, 133 (04): : 541 - 579
  • [29] AROUND BRAIDS
    Vershinin, Vladimir
    COMBINATORIAL AND TORIC HOMOTOPY: INTRODUCTORY LECTURES, 2018, 35 : 179 - 228
  • [30] Palindromic braids
    Deloup, Florian
    Garber, David
    Kaplan, Shmuel
    Teicher, Mina
    ASIAN JOURNAL OF MATHEMATICS, 2008, 12 (01) : 65 - 71