A Subspace Cascadic Multigrid Method for Mortar Elements

被引:1
|
作者
D. Braess
P. Deuflhard
K. Lipnikov
机构
[1] Faculty of Mathematics Ruhr-University D-44780 Bochum Germany e-mail: braess@num.ruhr-uni-bochum.de,
[2] Department of Mathematics University of Houston Houston TX 77204-3476 USA e-mail: lipnikov@math.uh.edu,undefined
[3] Konrad-Zuse-Zentrum Berlin (ZIB) & Freie Universität Berlin Takustrasse 7 & Arnimallee 2–6 D-14195 Berlin Germany e-mail: deuflhard@zib.de,undefined
来源
Computing | 2002年 / 69卷
关键词
AMS Subject Classification: 65N55.; Keywords: cascadic multigrid method, domain decomposition, mortar elements, non-matching grids, material jumps.;
D O I
暂无
中图分类号
学科分类号
摘要
A cascadic multigrid (CMG) method for elliptic problems with strong material jumps is proposed and analyzed. Non–matching grids at interfaces between subdomains are allowed and treated by mortar elements. The arising saddle point problems are solved by a subspace confined conjugate gradient method as smoother for the CMG. Details of algorithmic realization including adaptivity are elaborated. Numerical results illustrate the efficiency of the new subspace CMG algorithm.
引用
收藏
页码:205 / 225
页数:20
相关论文
共 50 条
  • [31] Extrapolation cascadic multigrid method on piecewise uniform grid
    CHEN ChuanMiao
    HU HongLing
    Science China(Mathematics), 2013, 56 (12) : 2711 - 2722
  • [32] On the convergence of a cascadic multigrid method for semilinear elliptic problem
    Zhou, SZ
    Hu, HX
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 159 (02) : 407 - 417
  • [34] Cascadic multigrid method for isoparametric finite element with numerical integration
    Bi, CJ
    Li, LK
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2004, 22 (01) : 123 - 136
  • [35] Complex exponential reconstruction algorithm accelerated by cascadic multigrid method
    Zhao Wang
    Dong Li-Zhi
    Yang Ping
    Wang Shuai
    Xu Bing
    ACTA PHYSICA SINICA, 2019, 68 (10)
  • [36] An Extrapolation Cascadic Multigrid Method for Elliptic Problems on Reentrant Domains
    Pan, Kejia
    He, Dongdong
    Chen, Chuanmiao
    ADVANCES IN APPLIED MATHEMATICS AND MECHANICS, 2017, 9 (06) : 1347 - 1363
  • [37] A ν-cycle multigrid approach for mortar finite elements
    Wohlmuth, BI
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) : 2476 - 2495
  • [38] Cascadic multigrid for parabolic problems
    Shi, ZC
    Xu, XJ
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2000, 18 (05) : 551 - 560
  • [39] A type of cascadic multigrid method for coupled semilinear elliptic equations
    Fei Xu
    Qiumei Huang
    Numerical Algorithms, 2020, 83 : 485 - 510
  • [40] MULTIGRID FOR THE MORTAR ELEMENT METHOD WITH LOCALLY P1 NONCONFORMING ELEMENTS
    毕春加
    李立康
    NumericalMathematicsAJournalofChineseUniversities(EnglishSeries), 2003, (02) : 193 - 204