Gait Recognition in Different Terrains with IMUs Based on Attention Mechanism Feature Fusion Method

被引:0
|
作者
Mengxue Yan
Ming Guo
Jianqiang Sun
Jianlong Qiu
Xiangyong Chen
机构
[1] Linyi University,School of Automation and Electrical Engineering
来源
Neural Processing Letters | 2023年 / 55卷
关键词
Gait recognition; Inertial measurement unit; Lightweight convolutional neural network; Attention mechanism; Feature fusion;
D O I
暂无
中图分类号
学科分类号
摘要
Gait recognition is significant in the fields of disease diagnosis and rehabilitation training by studying the characteristics of human gait with different terrain. To address the problem that the transformation of different outdoor terrains can affect the gait of walkers, a gait recognition algorithm based on feature fusion with attention mechanism is proposed. First, the acceleration, angular velocity and angle information collected by the inertial measurement unit is used; then the acquired inertial gait data is divided into periods to obtain the period data of each step; then the features are extracted from the data, followed by the visualization of the one-dimensional data into two-dimensional images. A lightweight model is designed to combine convolutional neural network with attention mechanism, and a new attention mechanism-based feature fusion method is proposed in this paper for extracting features from multiple sensors and fusing them for gait recognition. The comparison experimental results show that the recognition accuracy of the model proposed in this paper can reach 89%\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\%$$\end{document}, and it has good recognition effect on gait under different terrain.
引用
收藏
页码:10215 / 10234
页数:19
相关论文
共 50 条
  • [21] Statistical feature fusion for gait-based human recognition
    Han, J
    Bhanu, B
    PROCEEDINGS OF THE 2004 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, 2004, : 842 - 847
  • [22] Emotion Recognition via Multiscale Feature Fusion Network and Attention Mechanism
    Jiang, Yiye
    Xie, Songyun
    Xie, Xinzhou
    Cui, Yujie
    Tang, Hao
    IEEE SENSORS JOURNAL, 2023, 23 (10) : 10790 - 10800
  • [23] Attention Mechanism and Feature Correction Fusion Model for Facial Expression Recognition
    Xu, Qihua
    Wang, Changlong
    Hou, Yi
    PROCEEDINGS OF THE 6TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT 2021), 2021, : 786 - 793
  • [24] A multimodal fusion emotion recognition method based on multitask learning and attention mechanism
    Xie, Jinbao
    Wang, Jiyu
    Wang, Qingyan
    Yang, Dali
    Gu, Jinming
    Tang, Yongqiang
    Varatnitski, Yury I.
    NEUROCOMPUTING, 2023, 556
  • [25] Feature level fusion method based on the coupled metric learning and its application in gait recognition
    Wang, Kejun
    Yan, Tao
    Lü, Zhuowen
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2013, 43 (SUPPL.I): : 7 - 11
  • [26] Deep learning gait recognition based on two branch spatiotemporal gait feature fusion
    Zhang Y.-Z.
    Dong X.
    Zhang, Yun-Zuo (zhangyunzuo888@sina.com), 1600, Northeast University (39): : 1403 - 1408
  • [27] Emitter Recognition Method Based on Feature Fusion
    Tian, Di
    Zhang, Jing
    Hu, Po
    Li, Zhongqi
    2023 35TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2023, : 4178 - 4183
  • [28] A new method for the recognition of day instar of adult silkworms using feature fusion and image attention mechanism
    Shi, Hongkang
    Zhu, Shiping
    Chen, Xiao
    Zhang, Jianfei
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (05) : 7455 - 7467
  • [29] An Instance Segmentation Method for Insulator Defects Based on an Attention Mechanism and Feature Fusion Network
    Wu, Junpeng
    Deng, Qitong
    Xian, Ran
    Tao, Xinguang
    Zhou, Zhi
    APPLIED SCIENCES-BASEL, 2024, 14 (09):
  • [30] A Spatiotemporal Fusion Method Based on Multiscale Feature Extraction and Spatial Channel Attention Mechanism
    Lei, Dajiang
    Ran, Gangsheng
    Zhang, Liping
    Li, Weisheng
    REMOTE SENSING, 2022, 14 (03)