Existence of solutions of certain quasilinear elliptic equations in ℝn without conditions at infinity

被引:3
|
作者
Laptev G.I. [1 ]
机构
[1] Moscow State Social University,
基金
俄罗斯基础研究基金会;
关键词
Bounded Domain; Elliptic Equation; Unbounded Domain; Principal Part; Coercivity Condition;
D O I
10.1007/s10958-008-0137-6
中图分类号
学科分类号
摘要
This paper deals with conditions for the existence of solutions of the equations considered in the whole space ℝn, n 2. The functions A i (x, u, ξ), i = 1, n, A 0(x, u), and f(x) can arbitrarily grow as |x| → ∞. These functions satisfy generalized conditions of the monotone operator theory in the arguments u and ξ ℝn. We prove the existence theorem for a solution u W loc 1,p (ℝn) under the condition p > n. © 2008 Springer Science+Business Media, Inc.
引用
收藏
页码:2384 / 2394
页数:10
相关论文
共 50 条