Explainable Artificial Intelligence in Alzheimer’s Disease Classification: A Systematic Review

被引:0
|
作者
Vimbi Viswan
Noushath Shaffi
Mufti Mahmud
Karthikeyan Subramanian
Faizal Hajamohideen
机构
[1] University of Technology and Applied Sciences,College of Computing and Information Sciences
[2] Nottingham Trent University,Department of Computer Science
[3] Nottingham Trent University,Medical Technologies Innovation Facility
[4] Nottingham Trent University,Computing and Informatics Research Centre
来源
Cognitive Computation | 2024年 / 16卷
关键词
Alzheimer’s Disease Classification; Ante-hoc; Blackbox Models; Explainable Artificial Intelligence; Intrepretable Machine Learning; Model-Agnostic; Model-Specific; Post-hoc; XAI;
D O I
暂无
中图分类号
学科分类号
摘要
The unprecedented growth of computational capabilities in recent years has allowed Artificial Intelligence (AI) models to be developed for medical applications with remarkable results. However, a large number of Computer Aided Diagnosis (CAD) methods powered by AI have limited acceptance and adoption in the medical domain due to the typical blackbox nature of these AI models. Therefore, to facilitate the adoption of these AI models among the medical practitioners, the models' predictions must be explainable and interpretable. The emerging field of explainable AI (XAI) aims to justify the trustworthiness of these models' predictions. This work presents a systematic review of the literature reporting Alzheimer's disease (AD) detection using XAI that were communicated during the last decade. Research questions were carefully formulated to categorise AI models into different conceptual approaches (e.g., Post-hoc, Ante-hoc, Model-Agnostic, Model-Specific, Global, Local etc.) and frameworks (Local Interpretable Model-Agnostic Explanation or LIME, SHapley Additive exPlanations or SHAP, Gradient-weighted Class Activation Mapping or GradCAM, Layer-wise Relevance Propagation or LRP, etc.) of XAI. This categorisation provides broad coverage of the interpretation spectrum from intrinsic (e.g., Model-Specific, Ante-hoc models) to complex patterns (e.g., Model-Agnostic, Post-hoc models) and by taking local explanations to a global scope. Additionally, different forms of interpretations providing in-depth insight into the factors that support the clinical diagnosis of AD are also discussed. Finally, limitations, needs and open challenges of XAI research are outlined with possible prospects of their usage in AD detection.
引用
收藏
页码:1 / 44
页数:43
相关论文
共 50 条
  • [31] An explainable machine learning approach for Alzheimer's disease classification
    Alatrany, Abbas Saad
    Khan, Wasiq
    Hussain, Abir
    Kolivand, Hoshang
    Al-Jumeily, Dhiya
    [J]. SCIENTIFIC REPORTS, 2024, 14 (01)
  • [32] A comprehensive evaluation of explainable Artificial Intelligence techniques in stroke diagnosis: A systematic review
    Gurmessa, Daraje Kaba
    Jimma, Worku
    [J]. COGENT ENGINEERING, 2023, 10 (02):
  • [33] Explainable Artificial Intelligence (XAI): A Systematic Literature Review on Taxonomies and Applications in Finance
    Martins, Tiago
    de Almeida, Ana Maria
    Cardoso, Elsa
    Nunes, Luis
    [J]. IEEE ACCESS, 2024, 12 : 618 - 629
  • [34] Deciphering Knee Osteoarthritis Diagnostic Features With Explainable Artificial Intelligence: A Systematic Review
    Teoh, Yun Xin
    Othmani, Alice
    Li Goh, Siew
    Usman, Juliana
    Lai, Khin Wee
    [J]. IEEE ACCESS, 2024, 12 : 109080 - 109108
  • [35] Essential properties and explanation effectiveness of explainable artificial intelligence in healthcare: A systematic review
    Jung, Jinsun
    Lee, Hyungbok
    Jung, Hyunggu
    Kim, Hyeoneui
    [J]. HELIYON, 2023, 9 (05)
  • [36] Explainable Artificial Intelligence (XAI) for Oncological Ultrasound Image Analysis: A Systematic Review
    Wyatt, Lucie S.
    van Karnenbeek, Lennard M.
    Wijkhuizen, Mark
    Geldof, Freija
    Dashtbozorg, Behdad
    [J]. Applied Sciences (Switzerland), 2024, 14 (18):
  • [37] HOW CAN EXPLAINABLE ARTIFICIAL INTELLIGENCE ACCELERATE THE SYSTEMATIC LITERATURE REVIEW PROCESS?
    Abogunrin, S.
    Bagavathiappan, S. K.
    Kumaresan, S.
    Lane, M.
    Oliver, G.
    Witzmann, A.
    [J]. VALUE IN HEALTH, 2023, 26 (06) : S293 - S293
  • [38] A Systematic Review of Explainable Artificial Intelligence in Terms of Different Application Domains and Tasks
    Islam, Mir Riyanul
    Ahmed, Mobyen Uddin
    Barua, Shaibal
    Begum, Shahina
    [J]. APPLIED SCIENCES-BASEL, 2022, 12 (03):
  • [39] Enhancing Trust in Alzheimer's Disease Classification using Explainable Artificial Intelligence: Incorporating Local Post Hoc Explanations for a Glass-box Model
    Varghese, Abraham
    George, Ben
    Sherimon, Vinu
    Al Shuaily, Huda Salim
    [J]. BAHRAIN MEDICAL BULLETIN, 2023, 45 (02) : 1471 - 1478
  • [40] Malaria cell image classification by explainable artificial intelligence
    Raihan, Md Johir
    Nahid, Abdullah-Al
    [J]. HEALTH AND TECHNOLOGY, 2022, 12 (01) : 47 - 58