Versatile and efficient genome editing with Neisseria cinerea Cas9

被引:0
|
作者
Zhiquan Liu
Siyu Chen
Wanhua Xie
Hao Yu
Liangxue Lai
Zhanjun Li
机构
[1] Jilin University,Key Laboratory of Zoonosis Research, Ministry of Education, College of Animal Science
[2] Shenyang Medical College,The Precise Medicine Center
[3] Chinese Academy of Sciences,CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine a
[4] Guangzhou Regenerative Medicine and Health Guang Dong Laboratory (GRMH-GDL),Institute for Stem Cell and Regeneration
[5] Chinese Academy of Sciences,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The CRISPR/Cas9 system is a versatile genome editing platform in biotechnology and therapeutics. However, the requirement of protospacer adjacent motifs (PAMs) limits the genome targeting scope. To expand this repertoire, we revisited and engineered a compact Cas9 orthologue derived from Neisseria cinerea (NcCas9) for efficient genome editing in mammal cells. We demonstrated that NcCas9 generates genome editing at target sites with N4GYAT (Y = T/C) PAM which cannot be recognized by existing Cas9s. By optimizing the NcCas9 architecture and its spacer length, editing efficacy of NcCas9 was further improved in human cells. In addition, the NcCas9-derived Base editors can efficiently generate base conversions. Six anti-CRISPR (Acr) proteins were identified as off-switches for NcCas9. Moreover, NcCas9 successfully generated efficient editing of mouse embryos by microinjection of NcCas9 mRNA and the corresponding sgRNA. Thus, the NcCas9 holds the potential to broaden the CRISPR/Cas9 toolsets for efficient gene modifications and therapeutic applications.
引用
收藏
相关论文
共 50 条
  • [41] Efficient genome editing of Brassica campestris based on the CRISPR/Cas9 system
    Xingpeng Xiong
    Weimiao Liu
    Jianxia Jiang
    Liai Xu
    Li Huang
    Jiashu Cao
    Molecular Genetics and Genomics, 2019, 294 : 1251 - 1261
  • [42] CRISPR/Cas9: A Robust Genome-Editing Tool with Versatile Functions and Endless Application
    Zhang, Baohong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (14)
  • [43] CRISPR/CAS9 GENOME EDITING FOR NEURODEGENERATIVE DISEASES
    Nojadeh, Jafar Nouri
    Eryilmaz, Nur Seren Bildiren
    Erguder, Berrin Imge
    EXCLI JOURNAL, 2023, 22 : 567 - 582
  • [44] CRISPR/CAS9, the king of genome editing tools
    A. V. Bannikov
    A. V. Lavrov
    Molecular Biology, 2017, 51 : 514 - 525
  • [45] Nanoparticle Delivery of CRISPR/Cas9 for Genome Editing
    Duan, Li
    Ouyang, Kan
    Xu, Xiao
    Xu, Limei
    Wen, Caining
    Zhou, Xiaoying
    Qin, Zhuan
    Xu, Zhiyi
    Sun, Wei
    Liang, Yujie
    FRONTIERS IN GENETICS, 2021, 12
  • [46] Advances in therapeutic CRISPR/Cas9 genome editing
    Schwank, G.
    EUROPEAN JOURNAL OF HUMAN GENETICS, 2019, 27 : 1053 - 1053
  • [47] CRISPR/CAS9, the King of Genome Editing Tools
    Bannikov, A. V.
    Lavrov, A. V.
    MOLECULAR BIOLOGY, 2017, 51 (04) : 514 - 525
  • [48] CRISPR/CAS9: THE GOLD STANDARD OF GENOME EDITING?
    Gleeson, Alfie
    Sawyer, Abigail
    BIOTECHNIQUES, 2018, 64 (06) : 239 - 244
  • [49] CRISPR/Cas9 and other techniques for genome editing
    Hartung, Frank
    Schiemann, Jochen
    Sprink, Thorben
    ZWEITES SYMPOSIUM ZIERPFLANZENZUCHTUNG, 2017, 2017, 457 : 36 - 39
  • [50] Genome Editing in Cotton with the CRISPR/Cas9 System
    Gao, Wei
    Long, Lu
    Tian, Xinquan
    Xu, Fuchun
    Liu, Ji
    Singh, Prashant K.
    Botella, Jose R.
    Song, Chunpeng
    FRONTIERS IN PLANT SCIENCE, 2017, 8