A family of discrete semi-classical orthogonal polynomials of class one

被引:0
|
作者
M. Sghaier
M. Zaatra
机构
[1] Institut Supérieur d’Informatique de Medenine,
[2] Institut Supérieur des Sciences et Techniques des Eaux de Gabés,undefined
来源
关键词
Discrete semi-classical orthogonal polynomials; Difference operator; Laguerre-Freud equations; 33C45; 42C05;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we solve the system of Laguerre–Freud equations for the recurrence coefficients βn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _n$$\end{document}, γn+1,n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{n+1} , n \ge 0$$\end{document} of the Dw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_{w}$$\end{document}-semi-classical orthogonal polynomials sequences of class one in the case when β0=-t0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{0}=-t_{0}$$\end{document}, βn+1=tn-tn+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\beta _{n+1}=t_{n}-t_{n+1}$$\end{document} and γn+1=-tn2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma _{n+1}=-t_{n}^{2}$$\end{document} with tn≠0n≥0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t_{n}\ne 0\;n\ge 0$$\end{document}, where Dw\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$D_w$$\end{document} is the divided difference operator. There are essentially four canonical families.
引用
收藏
页码:68 / 87
页数:19
相关论文
共 50 条