Localization of resonant spherical waves

被引:0
|
作者
Galiev Sh.U. [1 ]
Panova O.P. [2 ]
机构
[1] Department of Mechanical Engineering, University of Auckland, Auckland
[2] Institute of Problem of Strength, National Academy of Sciences of Ukraine, Kiev
关键词
Viscosity; Shock Wave; General Solution; Boundary Problem; Vries Equation;
D O I
10.1023/A:1014826503411
中图分类号
学科分类号
摘要
This paper treats radial spherical resonant waves excited in the transresonant regime. An approximate general solution of a perturbed-wave equation is presented here, which takes into account nonlinear, spatial, and dissipative effects. Then the boundary problem reduces to the perturbed compound Burgers-Korteweg-de Vries equation (BKdV) in time. Several solutions to this equation are constructed. Shock waves may be excited near resonance according to the solutions for an inviscid medium. However, both viscosity and spatial dispersion begin to be important very close to resonance and prevent the formation of shock discontinuity. As a result, periodic localized excitations are generated in resonators instead of shock waves. © 2002 Plenum Publishing Corporation.
引用
收藏
页码:73 / 79
页数:6
相关论文
共 50 条
  • [41] Resonant detectors for gravitational waves
    Pizzella, G
    NUCLEAR PHYSICS B, 1996, : 91 - 95
  • [42] Resonant detectors for gravitational waves
    Baggio, L
    Bonaldi, M
    Cerdonio, M
    Conti, L
    Visconti, VC
    Falferi, P
    Fortini, PL
    Martinucci, V
    Mezzena, R
    Ortolan, A
    Prodi, GA
    Taffarello, L
    Vedovato, G
    Vitale, S
    Zendri, JP
    FUNDAMENTAL PHYSICS IN SPACE, 2000, 25 (06): : 1171 - 1176
  • [43] RESONANT GENERATION OF INTERNAL WAVES
    NESTEROV, SV
    IZVESTIYA AKADEMII NAUK SSSR FIZIKA ATMOSFERY I OKEANA, 1970, 6 (07): : 744 - &
  • [44] Waves in resonant random media
    Bar-Ilan Univ, Ramat-Gan, Israel
    Waves Random Media, 4 (415-420):
  • [45] Photon localization in resonant media
    Chabanov, AA
    Genack, AZ
    PHYSICAL REVIEW LETTERS, 2001, 87 (15) : 153901 - 153901
  • [46] ACOUSTIC LOCALIZATION AND RESONANT SCATTERING
    CONDAT, CA
    JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1988, 83 (02): : 441 - 452
  • [47] Resonant excitation of nonlinear waves
    Gorbatova, Nataliya
    Kiselev, Oleg
    Glebov, Sergei
    MATHEMATICAL MODELING OF WAVE PHENOMENA, 2006, 834 : 196 - +
  • [48] Resonant travelling surface waves
    Galiev, SU
    Galiev, TS
    PHYSICS LETTERS A, 1998, 246 (3-4) : 299 - 305
  • [49] Waves in resonant random media
    Bass, FG
    Freilikher, VD
    Prosentsov, VV
    WAVES IN RANDOM MEDIA, 1998, 8 (04): : 415 - 420
  • [50] Resonant Waves: Immersed in Geometry
    Grillotti, Richard
    DiLallo, Andy
    Forbes, Angus G.
    LEONARDO, 2020, 53 (04) : 401 - 407