Orthonormal polynomial basis in local Dirichlet spaces

被引:0
|
作者
Emmanuel Fricain
Javad Mashreghi
机构
[1] Université de Lille,Laboratoire Paul Painlevé
[2] Université Laval,undefined
来源
关键词
30H05; 33C45; 33C47; 42B35; harmonically weighted Dirichlet spaces; orthogonal polynomials; polynomial approximation;
D O I
暂无
中图分类号
学科分类号
摘要
We provide an orthogonal basis of polynomials for the local Dirichlet space Dς. These polynomials have numerous interesting features and a very unique algebraic pattern. We obtain the recurrence relation, the generating function, a simple formula for their norm, and explicit formulae for the distance and the orthogonal projection onto the subspace of polynomials of degree at most n. The latter implies a new polynomial approximation scheme in local Dirichlet spaces. Orthogonal polynomials in a harmonically weighted Dirichlet space, created by a finitely supported singular measure, are also studied.
引用
收藏
页码:595 / 613
页数:18
相关论文
共 50 条
  • [1] Orthonormal polynomial basis in local Dirichlet spaces
    Fricain, Emmanuel
    Mashreghi, Javad
    ACTA SCIENTIARUM MATHEMATICARUM, 2021, 87 (3-4): : 595 - 613
  • [2] ORTHONORMAL BASIS FOR SPLINE SIGNAL SPACES
    KAMADA, M
    TORAICHI, K
    IKEBE, Y
    MORI, R
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (01) : 157 - 170
  • [3] ORTHONORMAL POLYNOMIAL BASES IN FUNCTION-SPACES
    WOJTASZCZYK, P
    WOZNIAKOWSKI, K
    ISRAEL JOURNAL OF MATHEMATICS, 1991, 75 (2-3) : 167 - 191
  • [4] ON ORTHONORMAL POLYNOMIAL BASES IN WEIGHTED LEBESGUE SPACES
    OSILENKER, BP
    RUSSIAN MATHEMATICAL SURVEYS, 1988, 43 (05) : 248 - 249
  • [5] Polynomial approximation in weighted Dirichlet spaces
    Mashreghi J.
    Ransford T.
    Complex Analysis and its Synergies, 2021, 7 (2)
  • [6] A RECURSIVE LOCAL POLYNOMIAL APPROXIMATION METHOD USING DIRICHLET CLOUDS AND RADIAL BASIS FUNCTIONS
    Jamshidi, Arta A.
    Powell, Warren B.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (04): : B619 - B644
  • [7] On an orthonormal polynomial basis in the space C[-1,1]
    Wozniakowski, K
    STUDIA MATHEMATICA, 2001, 144 (02) : 181 - 196
  • [8] An Orthonormal Basis in Sobolev-Slobodetskii Spaces on an Interval
    S. I. Eminov
    Differential Equations, 2005, 41 : 594 - 597
  • [9] An orthonormal basis in Sobolev-Slobodetskii spaces on an interval
    Eminov, SI
    DIFFERENTIAL EQUATIONS, 2005, 41 (04) : 594 - 597
  • [10] Orthogonal projections in the local Dirichlet spaces
    Fricain, Emmanuel
    Mashreghi, Javad
    COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2025,