One Inverse Problem for the Diffusion-Wave Equation in Bounded Domain

被引:0
|
作者
A. O. Lopushanskyi
H. P. Lopushanska
机构
[1] Rzeszów University,
[2] Lviv University,undefined
来源
关键词
Inverse Problem; Fractional Derivative; Positive Continuous Function; Fractional Diffusion Equation; Inverse Source Problem;
D O I
暂无
中图分类号
学科分类号
摘要
We prove the theorems on the existence and unique determination of a pair of functions: a(t) >0, t ∈ [0,T], and the solution u(x, t) of the first boundary-value problem for the equation Dtβu−atuxx=F0xt,xt∈0l×0T,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \begin{array}{ll}{D}_t^{\beta }u-a(t){u}_{xx}={F}_0\left(x,t\right),\hfill & \left(x,t\right)\in \left(0,l\right)\times \left(0,T\right],\hfill \end{array} $$\end{document}
引用
收藏
页码:743 / 757
页数:14
相关论文
共 50 条
  • [41] Generalized diffusion-wave equation with memory kernel
    Sandev, Trifce
    Tomovski, Zivorad
    Dubbeldam, Johan L. A.
    Chechkin, Aleksei
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (01)
  • [42] The fundamental solutions for the fractional diffusion-wave equation
    Mainardi, F
    [J]. APPLIED MATHEMATICS LETTERS, 1996, 9 (06) : 23 - 28
  • [43] Numerical Solution of Fractional Diffusion-Wave Equation
    Chen, An
    Li, Changpin
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2016, 37 (01) : 19 - 39
  • [44] D’Alembert Formula for Diffusion-Wave Equation
    A. V. Pskhu
    [J]. Lobachevskii Journal of Mathematics, 2023, 44 : 644 - 652
  • [45] Solutions to the fractional diffusion-wave equation in a wedge
    Povstenko, Yuriy
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2014, 17 (01) : 122 - 135
  • [46] Fractional Diffusion-Wave Equation with Application in Electrodynamics
    Pskhu, Arsen
    Rekhviashvili, Sergo
    [J]. MATHEMATICS, 2020, 8 (11) : 1 - 13
  • [47] Solutions to the fractional diffusion-wave equation in a wedge
    Yuriy Povstenko
    [J]. Fractional Calculus and Applied Analysis, 2014, 17 : 122 - 135
  • [48] D'Alembert Formula for Diffusion-Wave Equation
    Pskhu, A. V.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (02) : 644 - 652
  • [49] A Study on Fractional Diffusion-Wave Equation with a Reaction
    Abuomar, Mohammed M. A.
    Syam, Muhammed, I
    Azmi, Amirah
    [J]. SYMMETRY-BASEL, 2022, 14 (08):
  • [50] Fractional-order diffusion-wave equation
    ElSayed, AMA
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1996, 35 (02) : 311 - 322