Global weak solutions of the Navier–Stokes–Fokker–Planck system

被引:0
|
作者
S. M. Egorov
E. Ya. Khruslov
机构
[1] EPAM Systems,Institute for Low Temperature Physics and Engineering
[2] Ukrainian National Academy of Sciences,undefined
来源
关键词
Weak Solution; Vector Function; Global Existence; Weak Topology; Planck Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a coupled system of the Navier–Stokes and Fokker–Planck equations used to describe the motion of a polydispersed suspension of solid particles in a viscous incompressible fluid. We prove the theorem on existence of solutions and study some properties of global weak solutions of the initial boundary-value problem for this system.
引用
收藏
页码:212 / 248
页数:36
相关论文
共 50 条
  • [41] On the Nernst–Planck–Navier–Stokes system
    Peter Constantin
    Mihaela Ignatova
    Archive for Rational Mechanics and Analysis, 2019, 232 : 1379 - 1428
  • [42] Asymptotic analysis for a Vlasov-Fokker-Planck/Navier-Stokes system in a bounded domain
    Choi, Young-Pil
    Jung, Jinwook
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2021, 31 (11): : 2213 - 2295
  • [43] Asymptotic Analysis for a Vlasov-Fokker-Planck/ Compressible Navier-Stokes System of Equations
    A. Mellet
    A. Vasseur
    Communications in Mathematical Physics, 2008, 281 : 573 - 596
  • [44] Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations
    Mellet, A.
    Vasseur, A.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 281 (03) : 573 - 596
  • [45] Results on local well-posedness for the incompressible Navier-Stokes-Fokker-Planck system
    Li, Yatao
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2023, 74 (02):
  • [46] Global Weak Besov Solutions of the Navier-Stokes Equations and Applications
    Albritton, Dallas
    Barker, Tobias
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (01) : 197 - 263
  • [47] EXISTENCE OF GLOBAL WEAK SOLUTIONS OF p-NAVIER-STOKES EQUATIONS
    Liu, Jian-Guo
    Zhang, Zhaoyun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2022, 27 (01): : 469 - 486
  • [48] Global weak solutions to the incompressible Navier-Stokes-Vlasov equations
    Yu, Cheng
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2013, 100 (02): : 275 - 293
  • [49] Global existence of weak solutions to the Navier-Stokes-Korteweg equations
    Antonelli, Paolo
    Spirito, Stefano
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2022, 39 (01): : 171 - 200
  • [50] On the Stability in Weak Topology of the Set of Global Solutions to the Navier–Stokes Equations
    Hajer Bahouri
    Isabelle Gallagher
    Archive for Rational Mechanics and Analysis, 2013, 209 : 569 - 629