Low Noise Frequency-Domain Multiplexing of TES Bolometers Using SQUIDs at Sub-Kelvin Temperature

被引:0
|
作者
T. Elleflot
A. Suzuki
K. Arnold
C. Bebek
R. H. Cantor
K. T. Crowley
J. Groh
T. de Haan
A. Hornsby
J. Joseph
A. T. Lee
T. Liu
J. Montgomery
M. Russell
Q. Yu
机构
[1] Physics Division,Lawrence Berkeley National Laboratory
[2] University of California San Diego,Department of Physics
[3] STAR Cryoelectronics,Department of Physics
[4] University of California Berkeley,Electrical and Computer Engineering Department
[5] National Institute of Standards and Technology,Physics Department
[6] High Energy Accelerator Research Organization (KEK),undefined
[7] Princeton University,undefined
[8] McGill University,undefined
来源
关键词
Frequency-domain multiplexing; Transition edge sensors; Readout electronics; Cosmic Microwave Background;
D O I
暂无
中图分类号
学科分类号
摘要
Digital Frequency-Domain Multiplexing (DfMux) is a technique that uses MHz superconducting resonators and Superconducting Quantum Interference Device (SQUID) arrays to read out sets of transition edge sensors. DfMux has been used by several Cosmic Microwave Background experiments, including most recently POLARBEAR-2 and SPT-3 G with multiplexing factors as high as 68, and is the baseline readout technology for the planned satellite mission LiteBIRD. Here, we present recent work focused on improving DfMux readout noise, reducing parasitic impedance, and improving sensor operation. We have achieved a substantial reduction in stray impedance by integrating the sensors, resonators, and SQUID array onto a single-carrier board operated at 250 mK. This also drastically simplifies the packaging of the cryogenic components and leads to better-controlled crosstalk. We demonstrate a low readout noise level of 8.6 pA/Hz11/2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathrm{pA/Hz}1^{1/2}$$\end{document}, which was made possible by operating the SQUID array at a reduced temperature and with a low dynamic impedance. This is a factor of two improvement compared to the achieved readout noise level in currently operating Cosmic Microwave Background experiments using DfMux and represents a critical step toward maturation of the technology for the next generation of instruments.
引用
收藏
页码:693 / 701
页数:8
相关论文
共 50 条
  • [11] Design of frequency domain multiplexing of TES signals by multi-input SQUIDs
    Yamasaki, NY
    Masui, K
    Mitsuda, K
    Morooka, T
    Nakayama, S
    Takei, Y
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2006, 559 (02): : 790 - 792
  • [12] Performance Measurement of the 8-Input SQUIDs for TES Frequency Domain Multiplexing
    S. Kimura
    K. Masui
    Y. Takei
    K. Mitsuda
    N. Y. Yamasaki
    R. Fujimoto
    T. Morooka
    S. Nakayama
    Journal of Low Temperature Physics, 2008, 151 : 946 - 951
  • [13] Performance measurement of the 8-input SQUIDs for TES frequency domain multiplexing
    Kimura, S.
    Masui, K.
    Takei, Y.
    Mitsuda, K.
    Yamasaki, N. Y.
    Fujimoto, R.
    Morooka, T.
    Nakayama, S.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2008, 151 (3-4) : 946 - 951
  • [14] Low-Noise Readout of TES Detectors with Baseband Feedback Frequency Domain Multiplexing
    R. den Hartog
    M. D. Audley
    J. Beyer
    D. Boersma
    M. Bruijn
    L. Gottardi
    H. Hoevers
    R. Hou
    G. Keizer
    P. Khosropanah
    M. Kiviranta
    P. de Korte
    J. van der Kuur
    B.-J. van Leeuwen
    A. C. T. Nieuwenhuizen
    P. van Winden
    Journal of Low Temperature Physics, 2012, 167 : 652 - 657
  • [15] Low-Noise Readout of TES Detectors with Baseband Feedback Frequency Domain Multiplexing
    den Hartog, R.
    Audley, M. D.
    Beyer, J.
    Boersma, D.
    Bruijn, M.
    Gottardi, L.
    Hoevers, H.
    Hou, R.
    Keizer, G.
    Khosropanah, P.
    Kiviranta, M.
    de Korte, P.
    van der Kuur, J.
    van Leeuwen, B-J
    Nieuwenhuizen, A. C. T.
    van Winden, P.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2012, 167 (5-6) : 652 - 657
  • [16] Superconducting microstrip amplifiers with sub-Kelvin noise temperature near 4 GHz
    DeFeo, M. P.
    Plourde, B. L. T.
    APPLIED PHYSICS LETTERS, 2012, 101 (05)
  • [17] Ultra-low temperature adiabatic demagnetization refrigerator for sub-Kelvin region
    Wang Chang
    Li Ke
    Shen Jun
    Dai Wei
    Wang Ya-Nan
    Luo Er-Cang
    Shen Bao-Gen
    Zhou Yuan
    ACTA PHYSICA SINICA, 2021, 70 (09)
  • [18] Developments of Frequency-Domain Multiplexing of TES Arrays for a Future X-Ray Satellite Mission
    Akamatsu, H.
    Gottardi, L.
    Adams, J.
    Bandler, S.
    Bruijn, M.
    Chervenak, J.
    Eckart, M.
    Finkbeiner, F.
    den Hartog, R.
    den Herder, J.
    Hoevers, H.
    Jambunathan, M.
    Kelley, R.
    Kilbourne, C.
    Lee, S. J.
    van der Kuur, J.
    van den Linden, A.
    Porter, F.
    Sadleir, J.
    Smith, S.
    Kiviranta, M.
    Wassell, E.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2015, 25 (03)
  • [19] Performance of a Low-Parasitic Frequency-Domain Multiplexing Readout
    A. E. Lowitz
    A. N. Bender
    P. Barry
    T. W. Cecil
    C. L. Chang
    R. Divan
    M. A. Dobbs
    A. J. Gilbert
    S. E. Kuhlmann
    M. Lisovenko
    J. Montgomery
    V. Novosad
    S. Padin
    J. E. Pearson
    G. Wang
    V. Yefremenko
    J. Zhang
    Journal of Low Temperature Physics, 2020, 199 : 192 - 199
  • [20] Performance of a Low-Parasitic Frequency-Domain Multiplexing Readout
    Lowitz, A. E.
    Bender, A. N.
    Barry, P.
    Cecil, T. W.
    Chang, C. L.
    Divan, R.
    Dobbs, M. A.
    Gilbert, A. J.
    Kuhlmann, S. E.
    Lisovenko, M.
    Montgomery, J.
    Novosad, V
    Padin, S.
    Pearson, J. E.
    Wang, G.
    Yefremenko, V
    Zhang, J.
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2020, 199 (1-2) : 192 - 199