Family of fourth-order optimal classes for solving multiple-root nonlinear equations

被引:0
|
作者
Francisco I. Chicharro
Neus Garrido
Julissa H. Jerezano
Daniel Pérez-Palau
机构
[1] Universitat Politècnica de València,Institute for Multidisciplinary Mathematics
[2] Universidad Internacional de La Rioja,Escuela Superior de Ingeniería y Tecnología
[3] Campus Valle del Sula,Departamento de Matemática
[4] Universidad Nacional Autónoma de Honduras,undefined
来源
关键词
Nonlinear; Dynamics; Multiple-root; Chemical application; 65H05;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new iterative procedure for solving nonlinear equations with multiple roots with high efficiency. Starting from the arithmetic mean of Newton’s and Chebysev’s methods, we generate a two-step scheme using weight functions, resulting in a family of iterative methods that satisfies the Kung and Traub conjecture, yielding an optimal family for different choices of weight function. We have performed an in-depth analysis of the stability of the family members, in order to select those members with the highest stability for application in solving mathematical chemistry problems. We show the good characteristics of the selected methods by applying them on four relevant chemical problems.
引用
收藏
页码:736 / 760
页数:24
相关论文
共 50 条
  • [31] A highly efficient class of optimal fourth-order methods for solving nonlinear systems
    Cordero, Alicia
    Rojas-Hiciano, Renso V.
    Torregrosa, Juan R.
    Vassileva, Maria P.
    NUMERICAL ALGORITHMS, 2024, 95 (04) : 1879 - 1904
  • [32] An optimal fourth-order family of modified Cauchy methods for finding solutions of nonlinear equations and their dynamical behavior
    Liu, Tianbao
    Qin, Xiwen
    Li, Qiuyue
    OPEN MATHEMATICS, 2019, 17 : 1567 - 1598
  • [33] A highly efficient class of optimal fourth-order methods for solving nonlinear systems
    Alicia Cordero
    Renso V. Rojas-Hiciano
    Juan R. Torregrosa
    Maria P. Vassileva
    Numerical Algorithms, 2024, 95 : 1879 - 1904
  • [34] An optimal fourth-order family of methods for multiple roots and its dynamics
    Ramandeep Behl
    Alicia Cordero
    Sandile S. Motsa
    Juan R. Torregrosa
    Vinay Kanwar
    Numerical Algorithms, 2016, 71 : 775 - 796
  • [35] Stability analysis of a family of optimal fourth-order methods for multiple roots
    Zafar, Fiza
    Cordero, Alicia
    Torregrosa, Juan R.
    NUMERICAL ALGORITHMS, 2019, 81 (03) : 947 - 981
  • [36] An optimal fourth-order family of methods for multiple roots and its dynamics
    Behl, Ramandeep
    Cordero, Alicia
    Motsa, Sandile S.
    Torregrosa, Juan R.
    Kanwar, Vinay
    NUMERICAL ALGORITHMS, 2016, 71 (04) : 775 - 796
  • [37] Stability analysis of a family of optimal fourth-order methods for multiple roots
    Fiza Zafar
    Alicia Cordero
    Juan R. Torregrosa
    Numerical Algorithms, 2019, 81 : 947 - 981
  • [38] Fourth-order nonlinear oscillations of difference equations
    Thandapani, E
    Arockiasamy, IM
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2001, 42 (3-5) : 357 - 368
  • [39] A note on nonlinear fourth-order elliptic equations on
    Li, Lin
    Pan, Wen-Wu
    JOURNAL OF GLOBAL OPTIMIZATION, 2013, 57 (04) : 1319 - 1325
  • [40] On a class of fourth-order nonlinear difference equations
    Migda M.
    Musielak A.
    Schmeidel E.
    Advances in Difference Equations, 2004 (1) : 23 - 36