Family of fourth-order optimal classes for solving multiple-root nonlinear equations

被引:0
|
作者
Francisco I. Chicharro
Neus Garrido
Julissa H. Jerezano
Daniel Pérez-Palau
机构
[1] Universitat Politècnica de València,Institute for Multidisciplinary Mathematics
[2] Universidad Internacional de La Rioja,Escuela Superior de Ingeniería y Tecnología
[3] Campus Valle del Sula,Departamento de Matemática
[4] Universidad Nacional Autónoma de Honduras,undefined
来源
关键词
Nonlinear; Dynamics; Multiple-root; Chemical application; 65H05;
D O I
暂无
中图分类号
学科分类号
摘要
We present a new iterative procedure for solving nonlinear equations with multiple roots with high efficiency. Starting from the arithmetic mean of Newton’s and Chebysev’s methods, we generate a two-step scheme using weight functions, resulting in a family of iterative methods that satisfies the Kung and Traub conjecture, yielding an optimal family for different choices of weight function. We have performed an in-depth analysis of the stability of the family members, in order to select those members with the highest stability for application in solving mathematical chemistry problems. We show the good characteristics of the selected methods by applying them on four relevant chemical problems.
引用
收藏
页码:736 / 760
页数:24
相关论文
共 50 条