Fractional boundary value problems with Riemann-Liouville fractional derivatives

被引:0
|
作者
Jingjing Tan
Caozong Cheng
机构
[1] Beijing University of Technology,College of Applied Science
关键词
fractional differential equation; boundary value problem; fixed point theorem; mixed monotone operators;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, by employing two fixed point theorems of a sum operators, we investigate the existence and uniqueness of positive solutions for the following fractional boundary value problems: −D0+αx(t)=f(t,x(t),x(t))+g(t,x(t))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$-D_{0+}^{\alpha}x(t)=f(t, x(t), x(t))+g(t, x(t))$\end{document}, 0<t<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$0< t <1$\end{document}, 1<α<2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$1< \alpha<2$\end{document}, where D0+α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$D_{0+}^{\alpha}$\end{document} is the standard Riemann-Liouville fractional derivative, subject to either the boundary conditions x(0)=x(1)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(0)=x(1)=0$\end{document} or x(0)=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(0)=0$\end{document}, x(1)=βx(η)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$x(1)=\beta x(\eta)$\end{document} with η,βηα−1∈(0,1)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\eta, \beta\eta^{\alpha-1} \in(0,1)$\end{document}. We also construct an iterative scheme to approximate the solution. As applications of the main results, two examples are given.
引用
收藏
相关论文
共 50 条
  • [31] RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS WITH FRACTIONAL BOUNDARY CONDITIONS
    Ahmad, Bashir
    Nieto, Juan J.
    [J]. FIXED POINT THEORY, 2012, 13 (02): : 329 - 336
  • [32] PERIODIC BOUNDARY VALUE PROBLEMS WITH DELTA RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE ON TIME SCALES
    Yaslan, Ismail
    Liceli, Onur
    [J]. JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2018,
  • [33] On nonlocal Robin boundary value problems for Riemann-Liouville fractional Hahn integrodifference equation
    Patanarapeelert, Nichaphat
    Sitthiwirattham, Thanin
    [J]. BOUNDARY VALUE PROBLEMS, 2018,
  • [34] Existence of solutions for Riemann-Liouville multi-valued fractional boundary value problems
    Ahmad, Bashir
    Ntouyas, Sotiris K.
    [J]. GEORGIAN MATHEMATICAL JOURNAL, 2017, 24 (04) : 479 - 488
  • [35] QUASILINEARIZATION APPLIED TO BOUNDARY VALUE PROBLEMS AT RESONANCE FOR RIEMANN-LIOUVILLE FRACTIONAL DIFFERENTIAL EQUATIONS
    Eloe, Paul
    Jonnalagadda, Jaganmohan
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (10): : 2719 - 2734
  • [36] Hilfer fractional quantum system with Riemann-Liouville fractional derivatives and integrals in boundary conditions
    Passary, Donny
    Ntouyas, Sotiris K.
    Tariboon, Jessada
    [J]. AIMS MATHEMATICS, 2024, 9 (01): : 218 - 239
  • [37] Nontrivial Solutions for a Higher Order Nonlinear Fractional Boundary Value Problem Involving Riemann-Liouville Fractional Derivatives
    Zhang, Keyu
    O'Regan, Donal
    Xu, Jiafa
    Fu, Zhengqing
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019
  • [38] QUASILINEARIZATION METHOD FOR CAUSAL TERMINAL VALUE PROBLEMS INVOLVING RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVES
    Yakar, Coskun
    Arslan, Mehmet
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2019,
  • [39] NONLOCAL FRACTIONAL SUM BOUNDARY VALUE PROBLEMS FOR MIXED TYPES OF RIEMANN-LIOUVILLE AND CAPUTO FRACTIONAL DIFFERENCE EQUATIONS
    Soontharanon, J.
    Jasthitikulchai, N.
    Sitthiwirattham, T.
    [J]. DYNAMIC SYSTEMS AND APPLICATIONS, 2016, 25 (03): : 409 - 429
  • [40] Impulsive periodic boundary value problems for fractional differential equation involving Riemann-Liouville sequential fractional derivative
    Bai, Chuanzhi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 211 - 231