Solving proximal split feasibility problems without prior knowledge of operator norms

被引:0
|
作者
A. Moudafi
B. S. Thakur
机构
[1] Université des Antilles et de la Guyane,Ceregmia
[2] Pt. Ravishankar Shukla University,Département scientifique
来源
Optimization Letters | 2014年 / 8卷
关键词
Proximal split feasibility problems; Moreau–Yosida approximate; Prox-regularity; 49J53; 65K10; 49M37; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper our interest is in investigating properties and numerical solutions of Proximal Split feasibility Problems. First, we consider the problem of finding a point which minimizes a convex function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} such that its image under a bounded linear operator A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} minimizes another convex function g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}. Based on an idea introduced in Lopez (Inverse Probl 28:085004, 2012), we propose a split proximal algorithm with a way of selecting the step-sizes such that its implementation does not need any prior information about the operator norm. Because the calculation or at least an estimate of the operator norm ‖A‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert $$\end{document} is not an easy task. Secondly, we investigate the case where one of the two involved functions is prox-regular, the novelty of this approach is that the associated proximal mapping is not nonexpansive any longer. Such situation is encountered, for instance, in numerical solution to phase retrieval problem in crystallography, astronomy and inverse scattering Luke (SIAM Rev 44:169–224, 2002) and is therefore of great practical interest.
引用
收藏
页码:2099 / 2110
页数:11
相关论文
共 50 条
  • [31] On split equality variation inclusion problems in Banach spaces without operator norms
    Jolaoso, Lateef O.
    Ogbuisi, Ferdinard U.
    Mewomo, Oluwatosin T.
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2021, 12 : 425 - 446
  • [32] Solving split equality fixed-point problem of quasi-nonexpansive mappings without prior knowledge of operators norms
    Zhao, Jing
    OPTIMIZATION, 2015, 64 (12) : 2619 - 2630
  • [33] A linearly convergent algorithm without prior knowledge of operator norms for solving l1 - l2 minimization
    Zhuang, Yaru
    Che, Haitao
    Chen, Haibin
    APPLIED MATHEMATICS LETTERS, 2022, 125
  • [34] Adaptive algorithm for solving the SCFPP of demicontractive operators without a priori knowledge of operator norms
    Kitkuan, Duangkamon
    Kumam, Poom
    Berinde, Vasile
    Padcharoen, Anantachai
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2019, 27 (03): : 153 - 175
  • [35] Solving Split Common Fixed-Point Problem of Firmly Quasi-Nonexpansive Mappings without Prior Knowledge of Operators Norms
    Zhao, Jing
    Zhang, Hang
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [36] A simultaneous iterative method for split equality problems of two finitefamilies of strictly pseudononspreading mappings without prior knowledge ofoperator norms
    Haitao Che
    Meixia Li
    Fixed Point Theory and Applications, 2015
  • [37] REGULARIZED ALGORITHM FOR THE PROXIMAL SPLIT FEASIBILITY PROBLEMS
    Kumar, Ajay
    Thakur, Balwant Singh
    Turcanu, Teodor
    Sharma, Hemant Kumar
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2023, 85 (04): : 29 - 46
  • [38] REGULARIZED ALGORITHM FOR THE PROXIMAL SPLIT FEASIBILITY PROBLEMS
    Kumar, Ajay
    Thakur, Balwant Singh
    Turcanu, Teodor
    Sharma, Hemant Kumar
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2023, 85 (04): : 29 - 46
  • [39] On split generalised mixed equilibrium problems and fixed-point problems with no prior knowledge of operator norm
    Ogbuisi, F. U.
    Mewomo, O. T.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (03) : 2109 - 2128
  • [40] On split generalised mixed equilibrium problems and fixed-point problems with no prior knowledge of operator norm
    F. U. Ogbuisi
    O. T. Mewomo
    Journal of Fixed Point Theory and Applications, 2017, 19 : 2109 - 2128