Solving proximal split feasibility problems without prior knowledge of operator norms

被引:0
|
作者
A. Moudafi
B. S. Thakur
机构
[1] Université des Antilles et de la Guyane,Ceregmia
[2] Pt. Ravishankar Shukla University,Département scientifique
来源
Optimization Letters | 2014年 / 8卷
关键词
Proximal split feasibility problems; Moreau–Yosida approximate; Prox-regularity; 49J53; 65K10; 49M37; 90C25;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper our interest is in investigating properties and numerical solutions of Proximal Split feasibility Problems. First, we consider the problem of finding a point which minimizes a convex function f\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f$$\end{document} such that its image under a bounded linear operator A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$A$$\end{document} minimizes another convex function g\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$g$$\end{document}. Based on an idea introduced in Lopez (Inverse Probl 28:085004, 2012), we propose a split proximal algorithm with a way of selecting the step-sizes such that its implementation does not need any prior information about the operator norm. Because the calculation or at least an estimate of the operator norm ‖A‖\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert A\Vert $$\end{document} is not an easy task. Secondly, we investigate the case where one of the two involved functions is prox-regular, the novelty of this approach is that the associated proximal mapping is not nonexpansive any longer. Such situation is encountered, for instance, in numerical solution to phase retrieval problem in crystallography, astronomy and inverse scattering Luke (SIAM Rev 44:169–224, 2002) and is therefore of great practical interest.
引用
收藏
页码:2099 / 2110
页数:11
相关论文
共 50 条
  • [1] Solving proximal split feasibility problems without prior knowledge of operator norms
    Moudafi, A.
    Thakur, B. S.
    OPTIMIZATION LETTERS, 2014, 8 (07) : 2099 - 2110
  • [2] Solving the split equality problem without prior knowledge of operator norms
    Dong, Qiao-Li
    He, Songnian
    Zhao, Jing
    OPTIMIZATION, 2015, 64 (09) : 1887 - 1906
  • [3] Solving the split feasibility problem without prior knowledge of matrix norms
    Lopez, Genaro
    Martin-Marquez, Victoria
    Wang, Fenghui
    Xu, Hong-Kun
    INVERSE PROBLEMS, 2012, 28 (08)
  • [4] An iterative method for split inclusion problems without prior knowledge of operator norms
    J. Y. Bello Cruz
    Y. Shehu
    Journal of Fixed Point Theory and Applications, 2017, 19 : 2017 - 2036
  • [5] An iterative method for split inclusion problems without prior knowledge of operator norms
    Cruz, J. Y. Bello
    Shehu, Y.
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2017, 19 (03) : 2017 - 2036
  • [6] SOLVING SPLIT EQUALITY EQUILIBRIUM AND FIXED POINT PROBLEMS IN BANACH SPACES WITHOUT PRIOR KNOWLEDGE OF THE OPERATOR NORMS
    Okeke, Chibueze Christian
    Jolaoso, Lateef Olakunle
    Isiogugu, Felicia Obiageli
    Mewomo, Oluwatosin Temitope
    JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2019, 20 (04) : 661 - 683
  • [7] Solving a General Split Equality Problem Without Prior Knowledge of Operator Norms in Banach Spaces
    Gholamreza Zamani Eskandani
    Masoumeh Raeisi
    Results in Mathematics, 2021, 76
  • [8] Solving a General Split Equality Problem Without Prior Knowledge of Operator Norms in Banach Spaces
    Eskandani, Gholamreza Zamani
    Raeisi, Masoumeh
    RESULTS IN MATHEMATICS, 2021, 76 (01)
  • [9] Solving variational inequality and split equality common fixed-point problem without prior knowledge of operator norms
    Zhao, Jing
    Zong, Haili
    Liu, Guangxuan
    Zhang, Hang
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2016, 9 (09): : 5428 - 5440
  • [10] Solving Split Variational Inclusion Problem and Fixed Point Problem for Nonexpansive Semigroup without Prior Knowledge of Operator Norms
    Che, Haitao
    Li, Meixia
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015