Coconvex Approximation of Periodic Functions

被引:0
|
作者
D. Leviatan
I. A. Shevchuk
机构
[1] Tel Aviv University,Raymond and Beverly Sackler School of Mathematical Sciences
[2] Taras Shevchenko National University of Kyiv,Faculty of Mechanics and Mathematics
来源
关键词
Coconvex approximation by trigonometric polynomials; Degree of approximation; Jackson-type estimates; 41A29; 42A10; 41A25;
D O I
暂无
中图分类号
学科分类号
摘要
Let C~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\widetilde{C}}}$$\end{document} be the space of continuous 2π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2\pi $$\end{document}-periodic functions f, endowed with the uniform norm ‖f‖:=maxx∈R|f(x)|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Vert f\Vert :=\max _{x\in {\mathbb {R}}}|f(x)|$$\end{document}, and denote by ωk(f,t)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega _k(f,t)$$\end{document}, the k-th modulus of smoothness of f. Denote by C~r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\widetilde{C}}}^r$$\end{document}, the subspace of r times continuously differentiable functions f∈C~\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\widetilde{C}}}$$\end{document}, and let Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {T}}_n$$\end{document}, be the set of trigonometric polynomials Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n$$\end{document} of degree ≤n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le n$$\end{document} (that is, of order ≤2n+1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\le 2n+1$$\end{document}). Given a set Ys:={yi}i=12s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_s:=\{y_i\}_{i=1}^{2s}$$\end{document}, of 2s points, s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$s\ge 1$$\end{document}, such that -π≤y1<y2<⋯<y2s<π\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$-\pi \le y_1<y_2<\cdots<y_{2s}<\pi $$\end{document}, and a function f∈C~r\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f\in {{\widetilde{C}}}^r$$\end{document}, r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document}, that changes convexity exactly at the points Ys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_s$$\end{document}, namely, the points Ys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_s$$\end{document} are all the inflection points of f. We wish to approximate f by trigonometric polynomials which are coconvex with it, that is, satisfy f′′(x)Tn′′(x)≥0,x∈R.\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} f''(x)T_n''(x)\ge 0,\quad x\in {\mathbb {R}}. \end{aligned}$$\end{document}We prove, in particular, that if r≥3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$r\ge 3$$\end{document}, then for every k,s≥1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k,s\ge 1$$\end{document}, there exists a sequence {Tn}n=N∞\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{T_n\}_{n=N}^\infty $$\end{document}, N=N(r,k,Ys)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$N=N(r,k,Y_s)$$\end{document}, of trigonometric polynomials Tn∈Tn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$T_n\in {\mathbb {T}}_n$$\end{document}, coconvex with f, such that ‖f-Tn‖≤c(r,k,s)nrωk(f(r),1/n).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\begin{aligned} \Vert f-T_n\Vert \le \frac{c(r,k,s)}{n^r}\omega _k(f^{(r)},1/n). \end{aligned}$$\end{document}It is known that one may not take N independent of Ys\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$Y_s$$\end{document}.
引用
收藏
页码:695 / 726
页数:31
相关论文
共 50 条
  • [41] Nearly Comonotone Approximation of Periodic Functions
    G.A.Dzyubenko
    AnalysisinTheoryandApplications, 2017, 33 (01) : 74 - 92
  • [42] On approximation of periodic functions by Fourier sums
    Zhuk V.V.
    Journal of Mathematical Sciences, 2010, 166 (2) : 167 - 185
  • [43] Best approximation by periodic smooth functions
    Oram, JA
    Davydov, V
    JOURNAL OF APPROXIMATION THEORY, 1998, 92 (01) : 128 - 166
  • [44] STRONG APPROXIMATION OF ALMOST PERIODIC FUNCTIONS
    Lenski, Wlodzimierz
    Szal, Bogdan
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2014, 17 (04): : 1353 - 1364
  • [45] On approximation of periodic functions by Riesz sums
    Dodonov N.Y.
    Zhuk V.V.
    Journal of Mathematical Sciences, 2010, 166 (2) : 134 - 144
  • [46] Approximation of semigroups and cosine functions in spaces of periodic functions
    Campiti, Michele
    Ruggeri, Silvia Patrizia
    APPLICABLE ANALYSIS, 2007, 86 (02) : 167 - 186
  • [47] ON THE APPROXIMATION OF QUASIPERIODIC FUNCTIONS WITH DIOPHANTINE FREQUENCIES BY PERIODIC FUNCTIONS
    Jiang, Kai
    Li, Shifeng
    Zhang, Pingwen
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2025, 57 (01) : 951 - 978
  • [48] Coconvex approximation in the uniform norm: the final frontier
    K. Kopotun
    D. Leviatan
    I. A. Shevchuk
    Acta Mathematica Hungarica, 2006, 110 : 117 - 151
  • [49] On Approximation of Analytic Functions by Periodic Hurwitz Zeta-Functions
    Franckevic, Violeta
    Laurincikas, Antanas
    Siauciunas, Darius
    MATHEMATICAL MODELLING AND ANALYSIS, 2019, 24 (01) : 20 - 33
  • [50] COMONOTONE APPROXIMATION OF TWICE DIFFERENTIABLE PERIODIC FUNCTIONS
    Dzyubenko, H. A.
    UKRAINIAN MATHEMATICAL JOURNAL, 2009, 61 (04) : 519 - 540