Well-posedness for a perturbation of the KdV equation

被引:0
|
作者
X. Carvajal
L. Esquivel
机构
[1] Federal University of Rio de Janeiro,
[2] Gran Sasso Science Institute,undefined
关键词
Korteweg–de Vries equation; Cauchy problem; Local well-posedness; 35Q35; 35Q53;
D O I
暂无
中图分类号
学科分类号
摘要
This is a continuation of Carvajal and Panthee (Q Appl Math 74:571–594, 2016). In the present paper we study a dissipative versions of the Korteweg de Vries equation with rough initial data. By working in Bourgain’s type spaces we prove local well posedness results in Sobolev spaces of negative order.
引用
收藏
相关论文
共 50 条
  • [41] Global well-posedness for a coupled modified KdV system
    Corcho, Adan J.
    Panthee, Mahendra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2012, 43 (01): : 27 - 57
  • [42] Sharp ill-posedness and well-posedness results for the KdV-Burgers equation: the real line case
    Molinet, Luc
    Vento, Stephane
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2011, 10 (03) : 531 - 560
  • [43] LOCAL WELL-POSEDNESS FOR THE KDV HIERARCHY AT HIGH REGULARITY
    Kenig, Carlos E.
    Pilod, Didier
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2016, 21 (9-10) : 801 - 836
  • [44] Global well-posedness for a coupled modified KdV system
    Adán J. Corcho
    Mahendra Panthee
    Bulletin of the Brazilian Mathematical Society, New Series, 2012, 43 : 27 - 57
  • [45] Asymptotic well-posedness for the problem of soliton perturbation
    Kalyakin, LA
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 1997, 5 (04) : 447 - 458
  • [46] WELL-POSEDNESS FOR THE SUPERCRITICAL GKDV EQUATION
    Strunk, Nils
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 527 - 542
  • [47] On well-posedness for the Benjamin–Ono equation
    Nicolas Burq
    Fabrice Planchon
    Mathematische Annalen, 2008, 340 : 497 - 542
  • [48] Sharp well-posedness for the Benjamin equation
    Chen, W.
    Guo, Z.
    Xiao, J.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (17) : 6209 - 6230
  • [49] On the Gevrey well-posedness of the Kirchhoff equation
    Tokio Matsuyama
    Michael Ruzhansky
    Journal d'Analyse Mathématique, 2019, 137 : 449 - 468
  • [50] On the well-posedness of the hyperelastic rod equation
    Hasan Inci
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 795 - 802