Effect of temperature on the fresh and hardened state properties of alkali-activated slag/fly ash mixtures

被引:0
|
作者
Xiaodi Dai
Serdar Aydin
Mert Yücel Yardimci
Yubo Sun
Geert De Schutter
机构
[1] Ghent University,Magnel
[2] Dokuz Eylül University,Vandepitte Laboratory, Department of Structural Engineering and Building Materials
[3] Istanbul Okan University,Department of Civil Engineering
来源
Materials and Structures | 2023年 / 56卷
关键词
Fresh properties; Structural build-up; Ground granulated blast furnace slag; Fly ash; Temperature;
D O I
暂无
中图分类号
学科分类号
摘要
The effect of ambient temperature on the engineering properties of alkali-activated materials (AAM) needs to be further investigated due to the high variety of activating solutions in the AAM technology. This paper presents the rheological behavior, structural build-up, reaction kinetics and mechanical properties of GGBFS-FA mixtures activated by sodium hydroxide, sodium silicate, sodium carbonate and sodium sulfateinvestigated under different ambient temperature conditions. It was found that the effect of ambient temperature on the rheology and reaction kinetics was highly dependent on the activator type. Under room temperature conditions, the highest and lowest yield stress values were obtained in sodium hydroxide and sodium silicate mixtures, respectively. The increase in temperature did not affect the yield stresses and viscosities of sodium carbonate and sodium sulfate mixtures; however, the yield stresses of sodium hydroxide and sodium silicate mixtures significantly increased. This effect was more pronounced in mixtures with high Ms values. Higher storage modulus values were obtained with an increase in temperature, indicating initial structuration with temperature. The increasing temperature enhanced the compressive strength of alkali-activated GGBFS-FA mixtures. This improvement was more pronounced at early ages for the sodium silicate mixture, and at later ages for the sodium carbonate and sodium sulfate mixtures, while it was very limited in the sodium hydroxide mixture. The SEM images and calorimetric measurements showed the formation of a denser microstructure and enhancement in the exothermic peak with a shorter induction period with an increase in temperature.
引用
收藏
相关论文
共 50 条
  • [41] Magnesia Modification of Alkali-Activated Slag Fly Ash Cement
    Shen Weiguo
    Wang Yiheng
    Zhang Tao
    Zhou Mingkai
    Li Jiasheng
    Cui Xiaoyu
    JOURNAL OF WUHAN UNIVERSITY OF TECHNOLOGY-MATERIALS SCIENCE EDITION, 2011, 26 (01): : 121 - 125
  • [42] Properties of alkali-activated slag and fly ash blended sea sand concrete exposed to elevated temperature
    Wang, Junhao
    Yang, Shutong
    Sun, Zhongke
    Wang, Sheng
    Feng, Yaodong
    Ren, Zhenhua
    JOURNAL OF SUSTAINABLE CEMENT-BASED MATERIALS, 2024, 13 (02) : 274 - 299
  • [43] Study on the Macroscopic Properties and Microstructure of High Fly Ash Content Alkali-Activated Fly Ash Slag Concrete Cured at Room Temperature
    Yuan, Zhu
    Jia, Yanmin
    Xie, Xuanben
    Xu, Junming
    MATERIALS, 2025, 18 (03)
  • [44] Physical and mechanical properties of hemp fibre reinforced alkali-activated fly ash and fly ash/slag mortars
    Poletanovic, Bojan
    Dragas, Jelena
    Ignjatovic, Ivan
    Komljenovic, Miroslav
    Merta, Ildiko
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 259
  • [45] Compressive strength and microstructure of alkali-activated fly ash/slag binders at high temperature
    Pan, Z.
    Tao, Z.
    Cao, Y. F.
    Wuhrer, R.
    Murphy, T.
    CEMENT & CONCRETE COMPOSITES, 2018, 86 : 9 - 18
  • [46] External Sulphate Attack on Alkali-Activated Slag and Slag/Fly Ash Concrete
    Bondar, Dali
    Nanukuttan, Sreejith
    BUILDINGS, 2022, 12 (02)
  • [47] Shrinkage of Alkali-Activated Combined Slag and Fly Ash Concrete Cured at Ambient Temperature
    Rodrigue, Alexandre
    Bissonnette, Benoit
    Duchesne, Josee
    Fournier, Benoit
    ACI MATERIALS JOURNAL, 2022, 119 (03) : 15 - 23
  • [48] Design of Alkali-Activated Slag-Fly Ash Concrete Mixtures Using Machine Learning
    Gunasekera, C.
    Lokuge, W.
    Keskic, M.
    Raj, N.
    Law, D. W.
    Setunge, S.
    ACI MATERIALS JOURNAL, 2020, 117 (05) : 263 - 278
  • [49] Durability of alkali-activated fly ash-slag concrete- state of art
    Hamsashree
    Pandit, Poornachandra
    Prashanth, Shreelaxmi
    Katpady, Dhruva Narayana
    INNOVATIVE INFRASTRUCTURE SOLUTIONS, 2024, 9 (06)
  • [50] The fresh and engineering properties of alkali activated slag as a function of fly ash replacement and alkali concentration
    Wang, Wei-Chien
    Wang, Her-Yung
    Lo, Ming-Hung
    CONSTRUCTION AND BUILDING MATERIALS, 2015, 84 : 224 - 229