Characterizations of interior polar sets for the degenerate p-parabolic equation

被引:0
|
作者
Benny Avelin
Olli Saari
机构
[1] Aalto University School of Science,Department of Mathematics and Systems Analysis
[2] Uppsala University,Department of Mathematics
来源
关键词
Parabolic capacity; Degenerate parabolic equations; Nonlinear potential theory; P-parabolic equation; P-Laplace; Parabolic Hausdorff measure; Interior polar sets; Removability; Characterization; Primary 35K92; Secondary 31C45; 31C15;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with different characterizations of sets of nonlinear parabolic capacity zero, with respect to the parabolic p-Laplace equation. Specifically we prove that certain interior polar sets can be characterized by sets of zero nonlinear parabolic capacity. Furthermore we prove that zero capacity sets are removable for bounded supersolutions and that sets of zero capacity have a relation to a certain parabolic Hausdorff measure.
引用
收藏
页码:827 / 848
页数:21
相关论文
共 50 条
  • [31] A BOUNDARY HARNACK INEQUALITY FOR SINGULAR EQUATIONS OF p-PARABOLIC TYPE
    Kuusi, Tuomo
    Mingione, Giuseppe
    Nystrom, Kaj
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (08) : 2705 - 2719
  • [32] SOLUTION ESTIMATION FOR A DEGENERATE PARABOLIC EQUATION
    NABOKOV, RY
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1989, (02): : 97 - 99
  • [33] A DEGENERATE PARABOLIC EQUATION IN NONCYLINDRICAL DOMAINS
    BERTSCH, M
    DALPASSO, R
    FRANCHI, B
    MATHEMATISCHE ANNALEN, 1992, 294 (03) : 551 - 578
  • [34] On a degenerate parabolic equation from finance
    Zhan, Huashui
    WSEAS Transactions on Mathematics, 2010, 9 (12) : 861 - 873
  • [35] On the cauchy problem for a degenerate parabolic equation
    Winkler, M
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2001, 20 (03): : 677 - 690
  • [36] A STRONGLY DEGENERATE PARABOLIC AGGREGATION EQUATION
    Betancourt, F.
    Buerger, R.
    Karlsen, K. H.
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2011, 9 (03) : 711 - 742
  • [37] On a degenerate parabolic equation with singular convection
    Li, SH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 28 (01) : 175 - 197
  • [38] Oscillatory decay in a degenerate parabolic equation
    Winkler, Michael
    PARTIAL DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2022, 3 (04):
  • [39] Periodic solutions for a degenerate parabolic equation
    Ke, Yuanyuan
    Huang, Rui
    Sun, Jiebao
    APPLIED MATHEMATICS LETTERS, 2009, 22 (06) : 910 - 915
  • [40] NONUNIQUENESS OF SOLUTIONS OF A DEGENERATE PARABOLIC EQUATION
    BERTSCH, M
    DALPASSO, R
    UGHI, M
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1992, 161 : 57 - 81