Generalized skew-elliptical distributions and their quadratic forms

被引:0
|
作者
Marc G. Genton
Nicola M. R. Loperfido
机构
[1] Texas A&M University,Department of Statistics
[2] Università degli Studi di Urbino,Instituto di scienze Economiche, Facoltá di Economia
关键词
Elliptical distribution; invariance; kurtosis; selection model; skewness; weighted distribution;
D O I
暂无
中图分类号
学科分类号
摘要
This paper introduces generalized skew-elliptical distributions (GSE), which include the multivariate skew-normal, skew-t, skew-Cauchy, and skew-elliptical distributions as special cases. GSE are weighted elliptical distributions but the distribution of any even function in GSE random vectors does not depend on the weight function. In particular, this holds for quadratic forms in GSE random vectors. This property is beneficial for inference from non-random samples. We illustrate the latter point on a data set of Australian athletes.
引用
收藏
页码:389 / 401
页数:12
相关论文
共 50 条
  • [31] Bayesian modeling using a class of bimodal skew-elliptical distributions
    Elal-Olivero, David
    Gomez, Hector W.
    Quintana, Fernando A.
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (04) : 1484 - 1492
  • [32] Shannon Entropy and Mutual Information for Multivariate Skew-Elliptical Distributions
    Arellano-Valle, Reinaldo B.
    Contreras-Reyes, Javier E.
    Genton, Marc G.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (01) : 42 - 62
  • [34] Stein's Lemma for generalized skew-elliptical random vectors
    Adcock, Chris
    Landsman, Zinoviy
    Shushi, Tomer
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (13) : 3014 - 3029
  • [35] A UNIFIED WEIGHTED FAMILY OF DISTRIBUTIONS WHICH CONTAINS THE SKEW-ELLIPTICAL FAMILY
    Alodat, M. T.
    Al-Salman, S. O.
    Al-Rawwash, M. Y.
    [J]. PROBABILITY AND MATHEMATICAL STATISTICS-POLAND, 2014, 34 (02): : 215 - 235
  • [36] A new fatigue life model based on the family of skew-elliptical distributions
    Vilca-Labra, F
    Leiva-Sánchez, V
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2006, 35 (02) : 229 - 244
  • [37] L-statistics from multivariate unified skew-elliptical distributions
    Arellano-Valle, R. B.
    Jamalizadeh, Ahad
    Mahmoodian, H.
    Balakrishnan, N.
    [J]. METRIKA, 2014, 77 (04) : 559 - 583
  • [38] Noncentral quadratic forms of the skew elliptical variables
    Fang, BQ
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2005, 95 (02) : 410 - 430
  • [39] A proof for the existence of multivariate singular generalized skew-elliptical density functions
    Shushi, Tomer
    [J]. STATISTICS & PROBABILITY LETTERS, 2018, 141 : 50 - 55
  • [40] Quadratic forms in skew normal distributions
    Wang, Tonghui
    Li, Baokun
    [J]. Proceedings of the Sixth International Conference on Information and Management Sciences, 2007, 6 : 828 - 838