Projectively equivariant quantization and symbol on supercircle S1∣3

被引:0
|
作者
Taher Bichr
机构
[1] Faculté des sciences de Sfax,Département de Mathématiques
来源
关键词
differential operator; density; equivariant quantization and orthosymplectic algebra; 53D10; 17B66; 17B10;
D O I
暂无
中图分类号
学科分类号
摘要
Let Dλ,μ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal D}_{\lambda ,\mu }}$$\end{document} be the space of linear differential operators on weighted densities from ℱλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal F}_\lambda }$$\end{document} to ℱμ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal F}_\mu }$$\end{document} as module over the orthosymplectic Lie superalgebra osp(3|2)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathfrak{osp}(3\left| 2 \right.)$$\end{document}, where ℱλ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\cal F}_\lambda }$$\end{document}, λ∈ℂ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\lambda \in \mathbb{C}$$\end{document} is the space of tensor densities of degree λ on the supercircle S1∣3. We prove the existence and uniqueness of projectively equivariant quantization map from the space of symbols to the space of differential operators. An explicite expression of this map is also given.
引用
收藏
页码:1235 / 1248
页数:13
相关论文
共 50 条