Symplectic dynamics and the 3-sphere

被引:0
|
作者
Marc Kegel
Jay Schneider
Kai Zehmisch
机构
[1] Humboldt-Universität zu Berlin,Institut für Mathematik
[2] Zweitag GmbH,Mathematisches Institut
[3] Justus-Liebig-Universität Gießen,undefined
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
Given a knot in a closed connected orientable 3-manifold we prove that if the exterior of the knot admits an aperiodic contact form that is Euclidean near the boundary, then the 3-manifold is diffeomorphic to the 3-sphere and the knot is the unknot.
引用
收藏
页码:245 / 254
页数:9
相关论文
共 50 条
  • [21] MOTION OF LINKS IN THE 3-SPHERE
    GOLDSMITH, DL
    MATHEMATICA SCANDINAVICA, 1982, 50 (02) : 167 - 205
  • [22] Diameters of 3-sphere quotients
    Dunbar, William D.
    Greenwald, Sarah J.
    McGowan, Jill
    Searle, Catherine
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2009, 27 (02) : 307 - 319
  • [23] Dirac flow on the 3-sphere
    E. G. Malkovich
    Siberian Mathematical Journal, 2016, 57 : 340 - 351
  • [24] GEODESICS ON THE TANGENT SPHERE BUNDLE OF 3-SPHERE
    Ayhan, Ismet
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2013, 6 (02): : 100 - 109
  • [25] On invariants of surfaces in the 3-sphere
    Kurihara, Hiroaki
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2023, 32 (06)
  • [26] Fermions, Skyrmions and the 3-sphere
    Goatham, Stephen W.
    Krusch, Steffen
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (03)
  • [27] MOTIONS OF LINKS IN 3-SPHERE
    GOLDSMITH, DL
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 80 (01) : 62 - 66
  • [28] PECULIAR TRIANGULATION OF 3-SPHERE
    ALTSHULER, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) : 449 - 452
  • [29] CONCENTRIC TORI IN 3-SPHERE
    EDWARDS, CH
    BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1961, 67 (02) : 220 - &
  • [30] Embeddability in the 3-sphere is decidable
    20143017978255
    (1) Department of Applied Mathematics, Charles University, Prague, Czech Republic; (2) Department of Computer Science, ETH Zurich, Switzerland; (3) School of Computing, DePaul University, Chicago, United States; (4) IST Austria, Klosterneuburg, Austria, 1600, Exploring the Limits of Computing (ELC); for Advanced Technology (ERATO); Graduated School of Inf. Science of Tohoku University; Kawarabayashi Big Graph JST Exploratory Res.; Kayamori Foundation of Inf. Science Advancement; Kyoto University (Association for Computing Machinery, 2 Penn Plaza, Suite 701, New York, NY 10121-0701, United States):