Symmetries and first integrals in the mechanics of infinite-dimensional systems

被引:0
|
作者
V. M. Savchin
S. A. Budochkina
机构
[1] Peoples’ Friendship University of Russia,
来源
Doklady Mathematics | 2009年 / 79卷
关键词
Variational Principle; Wave Solution; Bilinear Form; Doklady Mathematic; Shallow Water Equation;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:189 / 190
页数:1
相关论文
共 50 条
  • [31] First Integrals and Symmetries of Nonholonomic Systems
    Paula Balseiro
    Nicola Sansonetto
    [J]. Archive for Rational Mechanics and Analysis, 2022, 244 : 343 - 389
  • [32] First Integrals and Symmetries of Nonholonomic Systems
    Balseiro, Paula
    Sansonetto, Nicola
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2022, 244 (02) : 343 - 389
  • [33] Identities from infinite-dimensional symmetries of Herglotz variational functional
    Georgieva, Bogdana
    Bodurov, Theodore
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2013, 54 (06)
  • [34] New infinite-dimensional hidden symmetries for heterotic string theory
    Gao, Ya-Jun
    [J]. PHYSICAL REVIEW D, 2007, 76 (04):
  • [35] INFINITE-DIMENSIONAL LIE GROUPS AS S-MATRIX SYMMETRIES
    WESTENHOLZ, CV
    [J]. ACTA PHYSICA AUSTRIACA, 1969, 30 (03): : 260 - +
  • [36] CLASSICAL MECHANICS IN INFINITE-DIMENSIONAL HILBERT-SPACE
    ZORSKI, H
    SZCZEPANSKI, J
    [J]. ARCHIVES OF MECHANICS, 1989, 41 (01): : 115 - 132
  • [37] On the observability of infinite-dimensional conformable systems
    Ennouari, Toufik
    Abouzaid, Bouchra
    Achhab, Mohammed Elarbi
    [J]. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (03) : 753 - 760
  • [38] Entropy exchange for infinite-dimensional systems
    Duan, Zhoubo
    Hou, Jinchuan
    [J]. SCIENTIFIC REPORTS, 2017, 7
  • [39] Observing Infinite-dimensional Dynamical Systems
    Lin, Jessica
    Ott, William
    [J]. SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (04): : 1229 - 1243
  • [40] Concurrence for infinite-dimensional quantum systems
    Guo, Yu
    Hou, Jinchuan
    Wang, Yuncai
    [J]. QUANTUM INFORMATION PROCESSING, 2013, 12 (08) : 2641 - 2653