Uncertainty principles for the biquaternion offset linear canonical transform

被引:0
|
作者
Gao, Wen-Biao [1 ]
机构
[1] Yangzhou Univ, Sch Math Sci, Yangzhou 225002, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Offset linear canonical transforms; Biquaternion offset linear canonical transforms; Uncertainty principle; Signal recovery;
D O I
10.1007/s11868-024-00590-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark's uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by usingDonoho-Stark's uncertainty principle associated with theBiQOLCT.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Donoho-Stark?s and Hardy?s uncertainty principles for the short-time quaternion offset linear canonical transform
    Dar, Aamir H.
    Bhat, M. Younus
    [J]. FILOMAT, 2023, 37 (14) : 4467 - 4480
  • [42] Offset Linear Canonical Stockwell Transform for Boehmians
    Kaur, Navneet
    Gupta, Bivek
    Verma, Amit K.
    Agarwal, Ravi P.
    [J]. MATHEMATICS, 2024, 12 (15)
  • [43] The algebra of 2D Gabor quaternionic offset linear canonical transform and uncertainty principlesThe algebra of 2D Gabor quaternionic offset LCT and uncertainty principles
    M. Younus Bhat
    Aamir H. Dar
    [J]. The Journal of Analysis, 2022, 30 : 637 - 649
  • [44] Uncertainty inequalities for linear canonical transform
    Xu, Guanlei
    Wang, Xiaotong
    Xu, Xiaogang
    [J]. IET SIGNAL PROCESSING, 2009, 3 (05) : 392 - 402
  • [45] Wigner distribution and associated uncertainty principles in the framework of octonion linear canonical transform
    Dar, Aamir H.
    Bhat, M. Younus
    [J]. Optik, 2023, 272
  • [46] Novel Uncertainty Principles Related to Quaternion Linear Canonical S-Transform
    Damang, Dahnial
    Bahri, Mawardi
    Toaha, Syamsuddin
    [J]. SYMMETRY-BASEL, 2024, 16 (07):
  • [47] On uncertainty principles for linear canonical transform of complex signals via operator methods
    Shi, Jun
    Liu, Xiaoping
    Zhang, Naitong
    [J]. SIGNAL IMAGE AND VIDEO PROCESSING, 2014, 8 (01) : 85 - 93
  • [48] Novel Uncertainty Principles for Two-Sided Quaternion Linear Canonical Transform
    Yan-Na Zhang
    Bing-Zhao Li
    [J]. Advances in Applied Clifford Algebras, 2018, 28
  • [49] On uncertainty principles for linear canonical transform of complex signals via operator methods
    Jun Shi
    Xiaoping Liu
    Naitong Zhang
    [J]. Signal, Image and Video Processing, 2014, 8 : 85 - 93
  • [50] GENERALIZED UNCERTAINTY PRINCIPLES FOR THE TWO-SIDED QUATERNION LINEAR CANONICAL TRANSFORM
    Yan-Na, Zhang
    Bing-Zhao, Li
    [J]. 2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 4594 - 4598