Stability Characterizations of ∈-isometries on Certain Banach Spaces

被引:0
|
作者
Li Xin Cheng
Long Fa Sun
机构
[1] Xiamen University,School of Mathematical Sciences
关键词
-isometry; stability; hereditarily indecomposable space; quasi-reflexive space; Banach space; 46B04; 46B20; 47A58; 46A20;
D O I
暂无
中图分类号
学科分类号
摘要
Suppose that X, Y are two real Banach Spaces. We know that for a standard ∈-isometry f: X → Y, the weak stability formula holds and by applying the formula we can induce a closed subspace N of Y*. In this paper, by using again the weak stability formula, we further show a sufficient and necessary condition for a standard ∈-isometry to be stable in assuming that N is w*-closed in Y*. Making use of this result, we improve several known results including Figiel’s theorem in reflexive spaces. We also prove that if, in addition, the space Y is quasi-reflexive and hereditarily indecomposable, then L(f)≡span¯[f(x)]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L(f) \equiv \overline {span} [f(x)]$$\end{document} contains a complemented linear isometric copy of X; Moreover, if X = Y, then for every ∈-isometry f : X → X, there exists a surjective linear isometry S : X → X such that f − S is uniformly bounded by 2∈ on X.
引用
收藏
页码:123 / 134
页数:11
相关论文
共 50 条
  • [1] Stability Characterizations of ε-isometries on Certain Banach Spaces
    Li Xin CHENG
    Long Fa SUN
    ActaMathematicaSinica, 2019, 35 (01) : 123 - 134
  • [2] Stability Characterizations of ε-isometries on Certain Banach Spaces
    Li Xin CHENG
    Long Fa SUN
    Acta Mathematica Sinica,English Series, 2019, (01) : 123 - 134
  • [3] Stability Characterizations of ε-isometries on Certain Banach Spaces
    Cheng, Li Xin
    Sun, Long Fa
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2019, 35 (01) : 123 - 134
  • [4] ISOMETRIES ON CERTAIN BANACH SPACES
    FLEMING, RJ
    JAMISON, JE
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (03): : A331 - A332
  • [5] ISOMETRIES ON CERTAIN BANACH-SPACES
    FLEMING, RJ
    JAMISON, JE
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1974, 9 (NOV): : 121 - 127
  • [6] STABILITY OF A PAIR OF BANACH SPACES FOR ε-ISOMETRIES
    戴端旭
    郑本拓
    ActaMathematicaScientia, 2019, 39 (04) : 1163 - 1172
  • [7] STABILITY OF ISOMETRIES ON BANACH-SPACES
    GEVIRTZ, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 89 (04) : 633 - 636
  • [8] Stability of a Pair of Banach Spaces for ε-Isometries
    Duanxu Dai
    Bentuo Zheng
    Acta Mathematica Scientia, 2019, 39 : 1163 - 1172
  • [9] Universal stability of Banach spaces for ε-isometries
    Cheng, Lixin
    Dai, Duanxu
    Dong, Yunbai
    Zhou, Yu
    STUDIA MATHEMATICA, 2014, 221 (02) : 141 - 149
  • [10] STABILITY OF A PAIR OF BANACH SPACES FOR ε-ISOMETRIES
    Dai, Duanxu
    Zheng, Bentuo
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (04) : 1163 - 1172