STABILITY OF A PAIR OF BANACH SPACES FOR ε-ISOMETRIES

被引:1
|
作者
戴端旭 [1 ]
郑本拓 [2 ]
机构
[1] College of Mathematics and Computer Science, Quanzhou Normal University
[2] Department of Mathematical Sciences, University of Memphis
基金
中央高校基本科研业务费专项资金资助;
关键词
Stability; ε-isometry; Figiel theorem; Banach space;
D O I
暂无
中图分类号
O177.2 [巴拿赫空间及其线性算子理论];
学科分类号
摘要
A pair of Banach spaces(X, Y) is said to be stable if for every ε-isometry f :X → Y, there exist γ > 0 and a bounded linear operator T : L(f) → X with ||T|| ≤α such that ||T f(x)-x|| ≤γε for all x ∈ X, where L(f) is the closed linear span of f(X). In this article, we study the stability of a pair of Banach spaces(X, Y) when X is a C(K) space.This gives a new positive answer to Qian’s problem. Finally, we also obtain a nonlinear version for Qian’s problem.
引用
收藏
页码:1163 / 1172
页数:10
相关论文
共 50 条
  • [1] Stability of a Pair of Banach Spaces for ε-Isometries
    Duanxu Dai
    Bentuo Zheng
    Acta Mathematica Scientia, 2019, 39 : 1163 - 1172
  • [2] STABILITY OF A PAIR OF BANACH SPACES FOR ε-ISOMETRIES
    Dai, Duanxu
    Zheng, Bentuo
    ACTA MATHEMATICA SCIENTIA, 2019, 39 (04) : 1163 - 1172
  • [3] STABILITY OF ISOMETRIES ON BANACH-SPACES
    GEVIRTZ, J
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1983, 89 (04) : 633 - 636
  • [4] Universal stability of Banach spaces for ε-isometries
    Cheng, Lixin
    Dai, Duanxu
    Dong, Yunbai
    Zhou, Yu
    STUDIA MATHEMATICA, 2014, 221 (02) : 141 - 149
  • [5] Stability Characterizations of ε-isometries on Certain Banach Spaces
    Li Xin CHENG
    Long Fa SUN
    ActaMathematicaSinica, 2019, 35 (01) : 123 - 134
  • [6] Stability Characterizations of ∈-isometries on Certain Banach Spaces
    Li Xin Cheng
    Long Fa Sun
    Acta Mathematica Sinica, English Series, 2019, 35 : 123 - 134
  • [7] STABILITY OF ISOMETRIES IN P-BANACH SPACES
    Tabor, Jacek
    Tabor, Jozer
    Zoldak, Marek
    FUNCTIONES ET APPROXIMATIO COMMENTARII MATHEMATICI, 2008, 38 (01) : 109 - 119
  • [8] A universal theorem for stability of ε-isometries of Banach spaces
    Cheng, Lixin
    Cheng, Qingjin
    Tu, Kun
    Zhang, Jichao
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (01) : 199 - 214
  • [9] Stability of Banach spaces via nonlinear ε-isometries
    Dai, Duanxu
    Dong, Yunbai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 414 (02) : 996 - 1005
  • [10] Stability of almost surjective ε-isometries of Banach spaces
    Vestfrid, Igor A.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2015, 269 (07) : 2165 - 2170