Detection of some elements in the stable homotopy groups of spheres

被引:0
|
作者
Xiugui Liu
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
关键词
Stable homotopy groups of spheres; Adams spectral sequence; May spectral sequence; Steenrod algebra; 55Q45;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres π*S is one of the central problems in homotopy theory. This paper constructs a new nontrivial family of homotopy elements in the stable homotopy groups of spheres \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pi _{p^n q + 2pq + q - 3} S $$\end{document} which is of order p and is represented by k0hn ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ext_A^{3,p^n q + 2pq + q} $$\end{document}(ℤp, ℤp) in the Adams spectral sequence, where p ≥ 5 is an odd prime, n ≥ 3 and q = 2(p − 1). In the course of the proof, a new family of homotopy elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pi _{p^n q + (p + 1)q - 1} V(1) $$\end{document} which is represented by β*i′*i*(hn) ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ext_A^{2,p^n q + (p + 1)q + 1} $$\end{document}(H*V(1), ℤp) in the Adams sequence is detected.
引用
收藏
页码:291 / 316
页数:25
相关论文
共 50 条
  • [21] The first stable homotopy groups of motivic spheres
    Rondigs, Oliver
    Spitzweck, Markus
    Ostvaer, Paul Arne
    ANNALS OF MATHEMATICS, 2019, 189 (01) : 1 - 74
  • [22] A nontrivial product in the stable homotopy groups of spheres
    LIU XiuguiInstitute of Mathematics Chinese Academy of Sciences Beijing China
    ScienceinChina,SerA., 2004, Ser.A.2004 (06) : 831 - 841
  • [23] Stable homotopy groups of spheres and higher singularities
    Ando, Yoshifurni
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 2006, 46 (01): : 147 - 165
  • [24] A composite map in the stable homotopy groups of spheres
    Liu, Xiugui
    FORUM MATHEMATICUM, 2013, 25 (02) : 241 - 253
  • [25] A Toda bracket in the stable homotopy groups of spheres
    Liu, Xiugui
    ALGEBRAIC AND GEOMETRIC TOPOLOGY, 2009, 9 (01): : 221 - 236
  • [26] Isotropic stable motivic homotopy groups of spheres
    Tanania, Fabio
    ADVANCES IN MATHEMATICS, 2021, 383
  • [27] A NEW FAMILY IN THE STABLE HOMOTOPY GROUPS OF SPHERES
    Liu, Xiugui
    Xiao, Jianming
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2023, 151 (05) : 2241 - 2251
  • [28] A NEW FAMILY IN THE STABLE HOMOTOPY GROUPS OF SPHERES
    Liu, X.
    Ma, K.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2012, 38 (02): : 313 - 322
  • [29] THE SECOND STABLE HOMOTOPY GROUPS OF MOTIVIC SPHERES
    Roendigs, Oliver
    Spitzweck, Markus
    Ostvaer, Paul arne
    DUKE MATHEMATICAL JOURNAL, 2024, 173 (06) : 1017 - 1084
  • [30] A nontrivial product in the stable homotopy groups of spheres
    Xiugui Liu
    Science in China Series A: Mathematics, 2004, 47 : 831 - 841