Detection of some elements in the stable homotopy groups of spheres

被引:0
|
作者
Xiugui Liu
机构
[1] Nankai University,School of Mathematical Sciences and LPMC
关键词
Stable homotopy groups of spheres; Adams spectral sequence; May spectral sequence; Steenrod algebra; 55Q45;
D O I
暂无
中图分类号
学科分类号
摘要
Let A be the mod p Steenrod algebra and S be the sphere spectrum localized at an odd prime p. To determine the stable homotopy groups of spheres π*S is one of the central problems in homotopy theory. This paper constructs a new nontrivial family of homotopy elements in the stable homotopy groups of spheres \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pi _{p^n q + 2pq + q - 3} S $$\end{document} which is of order p and is represented by k0hn ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ext_A^{3,p^n q + 2pq + q} $$\end{document}(ℤp, ℤp) in the Adams spectral sequence, where p ≥ 5 is an odd prime, n ≥ 3 and q = 2(p − 1). In the course of the proof, a new family of homotopy elements in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \pi _{p^n q + (p + 1)q - 1} V(1) $$\end{document} which is represented by β*i′*i*(hn) ∈ \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ Ext_A^{2,p^n q + (p + 1)q + 1} $$\end{document}(H*V(1), ℤp) in the Adams sequence is detected.
引用
收藏
页码:291 / 316
页数:25
相关论文
共 50 条