Going Beyond the Threshold: Scattering and Blow-up in the Focusing NLS Equation

被引:0
|
作者
Thomas Duyckaerts
Svetlana Roudenko
机构
[1] Université Paris 13,
[2] The George Washington University,undefined
来源
关键词
Global Behavior; Quadratic Phase; Compact Closure; Radial Positive Solution; Supercritical Wave Equation;
D O I
暂无
中图分类号
学科分类号
摘要
We study the focusing nonlinear Schrödinger equation i∂tu+Δu+|u|p-1u=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${i\partial_t u +\Delta u + |u|^{p-1}u=0}$$\end{document}, x∈RN\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${x \in \mathbb{R}^N}$$\end{document} in the L2-supercritical regime with finite energy and finite variance initial data. We investigate solutions above the energy (or mass–energy) threshold. In our first result, we extend the known scattering versus blow-up dichotomy above the mass–energy threshold for finite variance solutions in the energy-subcritical and energy-critical regimes, obtaining scattering and blow-up criteria for solutions with arbitrary large mass and energy. As a consequence, we characterize the behavior of the ground state initial data modulated by a quadratic phase. Our second result gives two blow up criteria, which are also applicable in the energy-supercritical NLS setting. We finish with various examples illustrating our results.
引用
收藏
页码:1573 / 1615
页数:42
相关论文
共 50 条
  • [31] Blow-up in the Boussinesq equation
    Turitsyn, Sergei K.
    [J]. Physical Review Letters, 1993, 70 (09)
  • [32] Blow-Up for the 1D Cubic NLS
    Banica, Valeria
    Luca, Renato
    Tzvetkov, Nikolay
    Vega, Luis
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (01)
  • [33] Threshold Scattering for the Focusing NLS with a Repulsive Potential
    Miao, Changxing
    Murphy, Jason
    Zheng, Jiqiang
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2023, 72 (02) : 409 - 453
  • [34] Uniqueness of ground state and minimal-mass blow-up solutions for focusing NLS with Hardy potential
    Mukherjee, Debangana
    Phan Thanh Nam
    Phuoc-Tai Nguyen
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2021, 281 (05)
  • [35] Continuation beyond interior gradient blow-up in a semilinear parabolic equation
    Marek Fila
    Johannes Lankeit
    [J]. Mathematische Annalen, 2020, 377 : 317 - 333
  • [36] Continuation beyond interior gradient blow-up in a semilinear parabolic equation
    Fila, Marek
    Lankeit, Johannes
    [J]. MATHEMATISCHE ANNALEN, 2020, 377 (1-2) : 317 - 333
  • [37] MULTIPLE CONTINUATION BEYOND BLOW-UP
    Fila, Marek
    Mizoguchi, Noriko
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (06) : 671 - 680
  • [38] Extending solutions beyond blow-up
    Boumenir, A
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1996, 26 (04) : 755 - 760
  • [39] Extending solutions beyond blow-up
    Department of Mathematics, K.F.U.P.M., Dhahran 31261, Saudi Arabia
    [J]. Nonlinear Anal Theory Methods Appl, 4 (755-760):
  • [40] Focusing blow-up for quasilinear parabolic equations
    Budd, CJ
    Galaktionov, VA
    Chen, JP
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1998, 128 : 965 - 992