Three-point current correlation functions as probes of effective conformal theories

被引:0
|
作者
Kassahun Betre
机构
[1] SLAC National Accelerator Laboratory,
关键词
1/N Expansion; Holography and condensed matter physics (AdS/CMT); Strong Coupling Expansion;
D O I
暂无
中图分类号
学科分类号
摘要
The first sub-leading, order \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {1 \left/ {{\sqrt{\lambda }}} \right.} $\end{document} correction to the three-point current correlation function \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \left\langle {J_i^a(x)J_j^b(y)J_k^c(z)} \right\rangle $\end{document} of a strongly coupled conformal system with non-Abelian global symmetry is shown to come uniquely from the non-renormalizable bulk operator \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\left( {{F_{{\mu \nu }}}} \right)}^3} $\end{document}. The non-renormalizable correction is suppressed by powers of the cutoff scale Λ of the bulk effective theory, which corresponds to a dimension cutoff Δ = RAdSΛ in the boundary effective conformal theory. The contribution of the non-renormalizable term to the three-point function is calculated from the weakly coupled AdS dual in the large N limit. It is shown to have a polarization structure different from the leading contribution, which comes from the renormalizable \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ {{\left( {{F_{{\mu \nu }}}} \right)}^2} $\end{document} operator. This suggests a possible experimental probe of the effective conformal description through a measurement of the cutoff dimension Δ in strongly coupled condensed matter systems.
引用
收藏
相关论文
共 50 条
  • [31] Three-point functions at finite temperature
    Carrington, ME
    Heinz, U
    EUROPEAN PHYSICAL JOURNAL C, 1998, 1 (3-4): : 619 - 625
  • [32] Three-point functions at finite temperature
    Department of Physics, Winnipeg Inst. of Theor. Physics, University of Winnipeg, Winnipeg, Man. R3B 2E9, Canada
    不详
    Eur. Phys. J. C, 3-4 (619-625):
  • [33] Three-point frequency fluctuation correlation functions of the OH stretch in liquid water
    Garrett-Roe, Sean
    Hamm, Peter
    JOURNAL OF CHEMICAL PHYSICS, 2008, 128 (10):
  • [34] Three-point velocity correlation functions in two-dimensional forced turbulence
    Bernard, D
    PHYSICAL REVIEW E, 1999, 60 (05): : 6184 - 6187
  • [35] Analysing the Epoch of Reionization with three-point correlation functions and machine learning techniques
    Jennings, W. D.
    Watkinson, C. A.
    Abdalla, F. B.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2020, 498 (03) : 4518 - 4532
  • [36] Accelerating the two-point and three-point galaxy correlation functions using Fourier transforms
    Slepian, Zachary
    Eisenstein, Daniel J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 455 (01) : L31 - L35
  • [37] Temperature dependence of three-point correlation functions of viscous liquids: the case of glycerol
    Dalle-Ferrier, Cecile
    Eibl, Stefan
    Pappas, Catherine
    Alba-Simionesco, Christiane
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (49)
  • [38] How to Determine the Branch Points of Correlation Functions in Euclidean Space II: Three-Point Functions
    Huber, Markus Q.
    Kern, Wolfgang J.
    Alkofer, Reinhard
    SYMMETRY-BASEL, 2023, 15 (02):
  • [39] Modeling the galaxy three-point correlation function
    Marin, Felipe A.
    Wechsler, Risa H.
    Frieman, Joshua A.
    Nichol, Robert C.
    ASTROPHYSICAL JOURNAL, 2008, 672 (02): : 849 - 860
  • [40] Three-point correlation function in the quasilinear regime
    Jing, YP
    Borner, G
    ASTRONOMY & ASTROPHYSICS, 1997, 318 (03) : 667 - 672