Acceptor formation in Mg-doped, indium-rich GaxIn1−xN: evidence for p-type conductivity

被引:0
|
作者
Naci Balkan
Engin Tiras
Ayse Erol
Mustafa Gunes
Sukru Ardali
MCetin Arikan
Dalphine Lagarde
Helene Carrère
Xavier Marie
Cebrail Gumus
机构
[1] University of Essex,Department of Computer Science and Electronic Engineering
[2] Anadolu University,Department of Physics
[3] Istanbul University,Faculty of Science, Department of Physics
[4] Université de Toulouse,Department of Physics
[5] LPCNO,undefined
[6] INSA-UPS-CNRS,undefined
[7] Cukurova University,undefined
关键词
Molecular Beam Epitaxy; Weak Temperature Dependence; Bulk Layer; Undoped Material; Quantitative Mobility Spectrum Analysis;
D O I
暂无
中图分类号
学科分类号
摘要
We report on the Mg-doped, indium-rich GaxIn1−xN (x < 30). In the undoped material, the intrinsic electron density is very high and as a result there is no detectable photoconductivity (PC) signal within the range of temperatures of 30 < T < 300 K. In the Mg-doped material however, where the conductivity is reduced, there is a strong PC spectrum with two prominent low-energy peaks at 0.65 and 1.0 eV and one broad high-energy peak at around 1.35 eV. The temperature dependence of the spectral photoconductivity under constant illumination intensity, at T > 150 K, is determined by the longitudinal-optical phonon scattering together with the thermal regeneration of non-equilibrium minority carriers from traps with an average depth of 103 ± 15 meV. This value is close to the Mg binding energy in GaInN. The complementary measurements of transient photoluminescence at liquid He temperatures give the e-A0 binding energy of approximately 100 meV. Furthermore, Hall measurements in the Mg-doped material also indicate an activated behaviour with an acceptor binding energy of 108 ± 20 meV.
引用
收藏
相关论文
共 50 条
  • [41] Charge Redistribution in Mg-Doped p-Type MoS2/GaN Photodetectors
    Cao, Ben
    Ma, Shufang
    Wang, Wenliang
    Tang, Xin
    Wang, Dou
    Shen, Weikang
    Qiu, Bocang
    Xu, Bingshe
    Li, Guoqiang
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (44): : 18893 - 18899
  • [42] Halide vapor phase epitaxy of p-type Mg-doped GaN utilizing MgO
    Ohnishi, Kazuki
    Amano, Yuki
    Fujimoto, Naoki
    Nitta, Shugo
    Honda, Yoshio
    Amano, Hiroshi
    APPLIED PHYSICS EXPRESS, 2020, 13 (06)
  • [43] SCHOTTKY-BARRIER PHOTODETECTOR BASED ON MG-DOPED P-TYPE GAN FILMS
    KHAN, MA
    KUZNIA, JN
    OLSON, DT
    BLASINGAME, M
    BHATTARAI, AR
    APPLIED PHYSICS LETTERS, 1993, 63 (18) : 2455 - 2456
  • [44] PHOTOLUMINESCENCE OF MG-DOPED P-TYPE GAN AND ELECTROLUMINESCENCE OF GAN P-N-JUNCTION LED
    AKASAKI, I
    AMANO, H
    KITO, M
    HIRAMATSU, K
    JOURNAL OF LUMINESCENCE, 1991, 48-9 : 666 - 670
  • [45] Role of interfacial electric field in thermal conductivity of indium-rich GaN/InxGa1−xN/GaN superlattices (x ≥ 0.7)
    Subhranshu Sekhar Sahu
    Bijay Kumar Sahoo
    Indian Journal of Physics, 2022, 96 : 2023 - 2039
  • [46] Role of interfacial electric field in thermal conductivity of indium-rich GaN/InxGa1-xN/GaN superlattices (x ≥ 0.7)
    Sahu, S. S.
    Sahoo, B. K.
    INDIAN JOURNAL OF PHYSICS, 2022, 96 (07) : 2023 - 2039
  • [47] Low p-type contact resistance using Mg-doped InGaN and InGaN/GaN superlattices
    Kumakura, K
    Makimoto, T
    Kobayashi, N
    PROCEEDINGS OF THE INTERNATIONAL WORKSHOP ON NITRIDE SEMICONDUCTORS, 2000, 1 : 797 - 800
  • [48] Thermal quenching effect of an infrared deep level in Mg-doped p-type GaN films
    Kim, K
    Chung, SJ
    APPLIED PHYSICS LETTERS, 2002, 80 (10) : 1767 - 1769
  • [49] Detailed deep trap analysis in Mg-doped p-type GaN layers grown by MOVPE
    Witte, H
    Krtschil, A
    Lisker, M
    Krost, A
    Christen, J
    Kuhn, B
    Scholz, F
    MATERIALS SCIENCE AND ENGINEERING B-SOLID STATE MATERIALS FOR ADVANCED TECHNOLOGY, 2001, 82 (1-3): : 85 - 87
  • [50] Electrical and luminescence properties of Mg-doped p-type GaPN grown by molecular beam epitaxy
    Mitsuyoshi, S.
    Umeno, K.
    Furukawa, Y.
    Urakami, N.
    Wakahara, A.
    Yonezu, H.
    PHYSICA STATUS SOLIDI C: CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7, NO 10, 2010, 7 (10): : 2498 - 2501